
3/13/2014

1

ETH Course 402-0248-00L: Electronics
for Physicists II (Digital)

• 1: Setup uC tools, introduction

• 2: Solder SMD Arduino Nano board

• 3: Build application around ATmega328P

• 4: Design your own PCB schematic

• 5: Place and route your PCB

• 6: Start logic design with FPGAs

Exercise 3: “Sound volume robot”
• measures sound volume and moves arm to

indicate loudness

• microphone -> preamp -> ADC -> uC -> PWM output

(debugging, programming)

3/13/2014

2

“RC” servos (Radio-Control Servo-Motors)

• Position controlled – Servo has internal position
measurement and controller

• Rotation angle 120 degrees
• Pulse width from 1-2ms sets desired position
• Pulses must be sent at frequency 50-200Hz
• Pulse height >2V

Period 5-20ms

Width 1-2ms

4

• Cheap (< 1$)
• Electret material, no polarization voltage

is required
• Low-noise JFET buffer
• Metal foil is connected to source of the

JFET through metal capsule

metal capsule
metal ring
metal foil
electret foil
air gap
spacer
metal backplate

case

Electret Microphone

3/13/2014

3

Microphone + Preamp

Servo power supply

ATmega328P Analog to Digital converter

• 10-bit Successive approximation
register (SAR) type

• 8 multiplexed single-ended input
channels

• Internal Temp sensor

• Max combined sample rate
79.6ks/s

• Interrupt on End of Conversion.

• Triggered by:
– External Interrupt Request 0

– Timer 0

– Timer 1

– Analog Comparator

3/13/2014

4

• Fixed-point digital signal processing pipeline

• Using timer interrupts for regular ADC
sampling intervals

3/13/2014

5

Signal processing pipeline
produces servo position corresponding to

average sound volume

Mic

Mean
removal
100Hz

High pass

Rectification
Square or
absolute

value

Smoothing
0.5Hz

lowpass

Servo Command
Normalizer+clipper

Some more about ADCs

High resolution
Low speed and
power

Medium
resolution
Medium power

Low resolution but
fast and hot

Single slope
(imprecise)

SAR (good
tradeoffs, most uC)

Flash (video rate,
oscilloscopes)

Dual slope (precise
but very slow)

Algorithmic (SD) 2-step

3/13/2014

6

ADC specifications

INL Integral nonlinearity Max absolute sample
deviation in bits

DNL Differential
nonlinearity

Max possible step size
variation in bits

Sample rate

Latency In samples How long in samples it takes
for a conversion (can be >>1
for pipelined converter)

Reference
voltage

Volts Minimum resolution

“Quantization noise”

00

01

10

11

code

2-bit converter

Vin

1/8 1/4 1/2 3/4

out n
2

2 LSB
Q

LSB
QRMS

Q

12

3.5

i
V V V

V
V

V
V

Vin

Vout

1

Max possible SNR? (Signal power/Noise power).
For uniformly distributed signal like a sawtooth, we get

2

LSB

2

10

2

2

2SNR=
1

12

210log dB
1

log 2
20 6 dB

log 10

. . for N=10, SNR=60dB

N
REF

N

db

N

V
V

SNR

N

e g

3/13/2014

7

W.R. Bennett. “Spectra of Quantized Signals”.
Bell System Technical Journal, 1948

Successive Approximate Register (SAR) ADC

SAR+control

DAC

code

+
-

Vin

VDA

S/H

3/13/2014

8

SAR+control

DAC

S/H

code

+
-

Vin

VDA

t
1
2
3
4
5

Vin

VDA

B
1
0
1
0
1

code=10101…

0v Vref

Using timer interrupts for regular ADC sampling
intervals in an Interrupt Service Routine (ISR)

Normal main
loop, waiting for

flag

Normal main loop, see flag
set, reads sample, starts

new sample, does DSP, and
updates PWM

Timer

ISR
push

Your ISR (set
TAKE_SAMPLE flag)

ISR
pop

Time
Timer interrupt, e.g.
Every 100us

Done by hardware, takes
~20 cycles

Initialize by starting first ADC sample in main loop

3/13/2014

9

ISR
void tc_irq(void) {

// Increment the counter, which is also
used to determine servo updates
tc_tick++;

// set a flag to tell main loop to take a
sample
takeSampleNow = TRUE;

// Toggle a GPIO pin (this pin is used as a
regular GPIO pin).
digitalWrite(13,!digitalRead(13)); //
debug, should toggle at desired sample rate

}

Timer Counter (TC) setup

• Download MsTimer2.zip and unzip in your
Arduino/libraries folder.

• Add #include <MsTimer2.h> at the beginning.

• Setup(): Add the following lines:

MsTimer2::set(time in us,t2_ovf);

MsTimer2::start();

• From now, for each Timer2 overflows, t2_ovf()
will be executed. You need to declare and write
code for t2_ovf() function.

3/13/2014

10

Fixed point signal processing pipeline

Mic

100Hz
High pass

Square

0.5Hz
lowpass

Normalizer
+ clipper

We need a digital low & high pass filters, like an RC or CR filter

A simple IIR high pass filter (discrete time)

3/13/2014

11

A simple IIR high pass digital filter
(fixed point, using binary shift operations)

(1)

1
If , then

2

2
(1)

2

1

t t t t t t

n

n

t t t tn

t t t t t t t

y

y y x x

y y

y x

n y n

y y n xn

What is the time constant?

a =
dt

t

Suppose	dt =100us	(10kHz	sample	rate)

and	a =1 /256	(n=8).

Then

t =100us	x	256=25.6ms

Corner	frequency	f
3dB

=
1

2pt
=6.2Hz

To	filter	with	n	times	longer	time	constant,	you	can	skip	n	samples

3/13/2014

12

DSP code sample
void device_task(void) {

if (takeSampleNow) { // flag set in timer ISR

takeSampleNow=FALSE;

// signal processing

int adcval = analogRead(apin); // 0-1023=5V

if (initialized)

audMean = ((adcval-audMean)>>NTAU1)+audMean; // TODO mix old and new value

else

audMean = adcval; // init filter with first reading

// only update meanSq at TAU2 interval, so to produce effective time constant that
is TAU2 times tau of audMean filtering

if(dspCounter--==0){

dspCounter=TAU2;

long diff = adcval - audMean; // signed diff of sample from mean

long sq = diff * diff; // square diff

if (initialized)

meanSq = ((sq-meanSq)>>NTAU1)+meanSq; // low pass square diff

else

meanSq = sq;

}

}

}

USB – Universal Serial Bus

• Physical layer

• User perspective (coder)

• Under the hood

– Device side

– Host side

• Achieving high performance

3/13/2014

13

USB Physical layer

• Up to USB 2.0 – full
(12Mbps) and high
(480Mbps) speed

• USB 3.0 super speed
(5Ggbs)

USB definitions

• IN means towards the host (the PC)

• OUT means towards the device (uC)

3/13/2014

14

Endpoints – multiple virtual channels

Can be double buffered

Double-buffered transfers can increase continuity

3/13/2014

15

Host vs. Device
For the USBB in host mode, the term “pipe” is used instead of

“endpoint” (used in device mode).
A host pipe corresponds to a device endpoint

The key to high performance on host side:
Asynchronous or Overlapped IO

• On the host side, an Input-Output (IO) thread manages the
USB IO.

• Multiple buffers (which can be much larger than the device
FIFO size) are submitted to the USB driver / host controller
to be filled by the USB controller.

1. When a buffer is filled, the IO thread is notified
asynchronously, which wakes it up.

2. The IO thread processes the buffer, and then gives it back
to the controller. The IO thread then notifies the main
user code that data is available, e.g. by writing to a
software queue.

• That way, the user doesn’t block waiting for data
• Our pyusb example doesn’t do this yet

3/13/2014

16

USB performance

• USB full speed (12Mbps): about 1MBps

• USB high speed (480Mbps): about 40MBps

• USB super speed (5Gbps): ??

ICs for USB

•Many uC. Also FTDI.USB full
speed

•CypressFX2USB high
speed

•CypressFX3USB super
speed

3/13/2014

17

CypressFX2

CPLD logic
chip. Writes
to FX2 FIFOs

CypressFX3

3/13/2014

18

ftdichip.com

• uC UART – USB
interface; looks
like COM serial
port on host side.

• Max speed is only
12Mbaud for the
UART port
unfortunately

3 groups of 8-10 people:
1st => 14:50 – 15:20
2nd => 15:20 – 15:50
3rd => 15:50 – 16:20

