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1 Introduction

1.1 Optical Flow, Flying Robots

Different groups are currently working on micro aerial vehicles that are ca-
pable of autonomous navigation (e.g. [19]). In contrast to flying robots that
are controlled by a computer that is situated on the ground and controls
these vehicles via an airborne connection, these autonomous systems have
extreme weight and performance restrictions that have to be matched by a
novel approach.

Insects, such as the fruitfly, on the other hand, show an extraordinary
ability for flight control [4, 16], even in difficult environments, such as nar-
row canyons with strong turbulences. The visual input is believed to be
the main sensory source for adapting the flight maneuvers to the changing
environment.

The neurocomputational basis of visual sensory input processing of the
fly has been studied in detail and different bio-inspired designs for flight
control and autonomous navigation using visual sensors have emerged. Par-
ticularly, the computation of of the optical flow (i.e. the pattern of appar-
ent motion of the optical scene caused by the relative motion between the
observer and the surroundings) can be used to detect different important
events, such as the deviation from the desired flight path, the approach of
an obstacle or the presence nearby stationary or moving objects.

Because the implementation of the signal processing, such as it has been
studied in the nervous system of insects, is computationally demanding, the
discovered principles need to be adapted to the technical possibilities, es-
pecially with the weight and performance constraints that have to be met
for a successful integration in a flying platform. There exists a wide vari-
ety of custom analog very large scale integration (aVLSI) implementations
that perform optical flow computation in hardware [2]. At the Institute of
Neuroinformatics (INI), several motion detection chips have been developed
that are capable of performing various degrees of processing of visual data,
ranging from simple filtering and amplification to calculation of the actual
motion vector, completely parallelized and continuous in time.

In a previous semester project [17], the output of a two-dimensional vari-
ant of such a motion detection chip (the MDC2D, see section 1.2) was used to
evaluate different algorithms that are commonly used for the determination
of the optical flow. Among others, an algorithm based on linear interpolation
of consecutive frames [15] was examined. This algorithm was chosen for this
project because it can be performed with fewer calculations than traditional
optical flow algorithms (such as gradient based optical flow determination)
and is therefore suitable for implementation on a microcontroller.

The objective of this semester project is the efficient implementation of
this system (estimation of global optical flow by interpolation performed
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on the output of the MDC2D) on a yet to be determined microcontroller
architecture. For achieving this, a printed circuit board and computer-based
test framework have first to be developed.

1.2 Motion Detection Chip 2D

In the past decades, a wide variety of Motion Detection Chips has emerged.
These chips contain light sensitive elements such as photodiodes to extract
information from the visual scene and process this data to a varying degree.
They extract information from the visual scene either through a simple
Active Pixel Sensor (APS, such as it can be found in commercial cameras)
or through a more elaborate pixel that contains circuitry to process the
raw light intensity signal, like adaptation elements or filter banks. Most of
these motion detection chips perform some kind of analog computation that
extracts information about the optical flow and this signal can then be read
out from the chip. Different algorithms for estimating this optical flow are
currently in use; for a more detailed description, see [2] chapter 8, p101ff.

The chip used in this project is called Motion Detection Chip 2D (MDC2D)
and was designed by Shih-Chii Liu at INI. For converting infalling light
into an electrical signal, a simplified version of the circuit decribed in [6] is
used. The output of this first stage of processing is a voltage that relates
logarithmically with the infalling light intensity and can be read out via an
analog pad. Encoding the signal logarithmically has the advantage that the
it becomes invariant to absolute light intensity (because the reflectance, i.e.
the percentage of light reflected, is an object property that remains constant
under all illumination conditions). A second stage amplifies this signal while
also acting as a high-pass filter [9]. This circuit is inspired by the laminar
monopolar cells in the fly visual system and aims at producing an output
with increased contrast for further processing. See figure 1 for the circuit
diagrams.

Contrary to most other motion detection chips, the MDC2D does not per-
form any analog computations on-chip and can therefore not directly output
the values of the optical flow. In the design described in this report, the ana-
log signal from the LMC circuit is sequentially read out and digitized, before
the algorithm described in section 1.3 is applied for computing the actual
optical flow. This sequential read-out has the disadvantage that it is prone
to temporal aliasing (unlike chips that perform continuous analog computa-
tion of motion values), although this can be avoided with a sufficiently high
readout rate. On the other side, it has the advantage that it reduces mis-
match inherent to analog computation and allows the sharing of centralized
resources (e.g. a microchip that performs optical flow computation among
other tasks).

Additionally to the 20× 20 pixels containing each the above-mentioned
circuitery, the MDC2D also includes a scanner that multiplexes the output
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Figure 1: The in-pixel circuit of the MDC2D: the two analog signals that can
be read-out via the pads are labeled in red (the output of the photoreceptor
circuit vrecep and the output of the LMC stage lmc1). Note that the nodes
labeled with p1 are connected together.

of the 400 pixels to a shared analog pad, a bias generator that reads in a
digital configuration and sets the operating point of the analog circuits and
an analog-to-digital converter (which was not used in this project). Please
refer to [17] for a more detailed description of the chip (such as pin-out,
biases and their optimal value and timing-diagrams for the scanner/ADC).

1.3 Image Interpolation for Global Flow Determination

There are several ways to computationally extract the global optical flow
from an image stream. One approach is to extract features from the visual
scene and track their spatial evolution (token based optical flow calculation).
Another approach is to use gradient-based schemes that compute the local
velocity based on the gradient in intensity (with some additional smooth-
ness constraint) and combine these local values to compute the global flow.
Srinivasan described yet another possibility to compute the global motion
[15, 14] by using a simple single-staged procedure of image interpolation.
In this project, the simplified version of this algorithm is used, which only
computes the translation along two dimensions, ignoring the rotational com-
ponent about the axis perpendicular to these two dimensions.

In the following paragraphs, a rigid textured plane is considered that
translates “en bloc” in the fronto-parallel plane, without any rotational com-
ponent. The basic assumption of this algorithm is that the image, as seen
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by the stationary camera, deforms linearly between two snapshots of the
trajectory. Let f(x, y) be the intensity function of an image captured by
this camera, f0(x, y) denoting a preceding snapshot taken ∆t earlier. Fur-
ther, the true (and unknown) displacement between the two snapshots will
be called ∆x,∆y.

A simple one-dimensional example will illustrate the assumption of lin-
ear deformation between two snapshots : Figure 2 shows a arbitrary one-
dimensional intensity function f0(x) as well as two versions shifted by ∆xr
(the reference amount ). The linear deformation can be expressed as

f̂(x) = f0(x) +
1

2

∆̂x

∆xr

f0(x+ ∆xr)︸ ︷︷ ︸
=f1(x)

− f0(x−∆xr)︸ ︷︷ ︸
=f2(x)

 (1)

where f̂(x) is the interpolated image based on the original image and the
two shifted images. Figure 3 shows the difference f(x)− f0(x) between the
original intensity function and the intensity function moved along the axis
by ∆x as well as the difference f̂(x) − f0(x) between the original intensity
function and the interpolated estimate.

The error between the moved intensity function its interpolated coun-
terpart is defined as

E =

∫ (
f(x)− f̂(x)

)2
dx (2)

and depends on the presumed shifted amount ∆̂x. Minimizing this error

by setting ∂E

∂∆̂x

!
= 0 and solving for ∆̂x yields

∆̂x = 2∆xr

∫
(f(x)− f0(x)) (f1(x)− f2(x)) dx∫

(f1(x)− f2(x))2 dx
(3)

As can be seen in figure 3, the algorithm yields good estimates for small
∆x but under-estimates the moved amount when ∆x > ∆xr. This observa-
tions was also made in two dimensions [15].
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Figure 2: An arbitrary one-dimensional intensity function and two shifted
versions; note that the shift is not a shift in the parameter of the function,
but simply a shift of the values, filled up with zeroes at the borders.

f0−f :dx=0.30∆xr

f0−f̂ :∆̂x=0.31∆xr →E=0.44λ

f0−f :dx=0.70∆xr

f0−f̂ :∆̂x=0.72∆xr →E=0.51λ

f0−f :dx=3.00∆xr

f0−f̂ :∆̂x=2.06∆xr →E=1.16λ

f0−f :dx=5.00∆xr

f0−f̂ :∆̂x=1.37∆xr →E=0.74λ

Figure 3: Difference of the moved intensity function and the original inten-
sity function (solid line) as well as between the interpolated intensity and the
original intensity functions (dashed line) – the amount of the interpolation
was calculated using formula (3); the error is in arbitrary units.
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Extending the algorithm into the second dimension is simple : equation
(1) needs to be rewritten for an interpolation with two variables ∆x and
∆y. The error (2) is integrated over two dimensions. Then, again by setting
∂E

∂∆̂x

!
= 0 , ∂E

∂∆̂y

!
= 0 and by using the following abbreviations

f1(x, y) = f0(x+ ∆xr, y) (4)

f2(x, y) = f0(x−∆xr, y) (5)

f3(x, y) = f0(x, y + ∆yr) (6)

f4(x, y) = f0(x, y −∆yr) (7)

a =

∫∫
(f2(x, y)− f1(x, y))2 dx · dy (8)

b =

∫∫
(f2(x, y)− f1(x, y)) (f4(x, y)− f3(x, y)) dx · dy (9)

c =

∫∫
(f4(x, y)− f3(x, y))2 dx · dy (10)

d =

∫∫
(f2(x, y)− f1(x, y)) (f(x, y)− f0(x, y)) dx · dy (11)

e =

∫∫
(f4(x, y)− f3(x, y)) (f(x, y)− f0(x, y)) dx · dy (12)

(13)

we get a simple linear system of equations with two unknowns.(
a b
b c

)
·

(
∆̂x/∆xr
∆̂y/∆yr

)
=

(
2d
2e

)
(14)

which can easily be solved explicitly, e.g.

∆̂y/∆yr =
2e− 2db

a

c− b2

a

, ∆̂x/∆xr =
2d− by

a
(15)

As mentioned earlier, the advantage of this algorithm is its relative low
computational cost: the reference images f1, f2, f3, f4 can be calculated by
simply subtracting shifted versions of the same image; the calculation of
a, b, c, d, e reduces to a looped multiply-and-accumulate and the global mo-
tion estimates in (15) can then be calculated with some few algebraic oper-
ations.
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2 Development

2.1 Choice of an Adequate Microcontroller

The algorithm described in section 1.3, together with the target application
of the motion calculation (i.e. micro aerial vehicles with relatievly high
optical flow) defined the performance criteria that lead to the choice of an
appropriate microcontroller.

In particular, performing a linear interpolation over a 20×20 pixel array
results in a total of 2006 multiplications, 2404 additions and 8 divisions
(as calculated in [17]) – the number of algebraic operations was further
reduced in the adaption of the algorithm to the microcontroller (see section
2.5). In order to perform the whole calculation in less than a millisecond,
the microprocessor should support single-cycle multiplications and run at
a speed of 10 MHz or higher. The speed of the division instruction is less
important because it is used only a few times for the whole calculation.

This considerations led to the choice of the dsPIC33FJ128MC804 [13]
(dsPIC33F). This 16 bit processor is designed for the use in digital signal
processing, runs at 40 MIPS and has single-cycled multiply-accumulate in-
structions (see section 2.5). The divide instruction is also implemented in
hardware, but takes 19 instruction cycles. The processor’s relatively large
amount of memory (16 kB) grants further optimization of the motion algo-
rithm, while it’s powerful ADC module allows fully automated acquisition
of analog signal values. Furthermore, this processor features a fast UART
interface and Direct Memory Access for an efficient streaming of data to the
computer.

The part chosen in this project is packaged in a 44 lead plastic thin quad
flatpack, because of its ease of assembly and the number of available i/o pins
for debugging purposes, but the same chip is also available in a lighter 28
lead plastic quad flat for use in very weight restricted applications.

2.2 Printed Circuit Board Design

For testing this new microcontroller with the MDC2D, a new printed circuit
board (PCB) had to be designed. The new PCB was loosely based on
a old design featuring a C8051F320 microcontroller from SiLabs with an
integrated High Speed USB stack [8] (this board was designed by Markus
Bernet [1]; the mistakes mentioned in [17] were corrected).

The purpose of this PCB is to provide a testing platform for the inter-
action of the dsPIC33F and the MDC2D, as well as the other parts described
below. It should facilitate development and debugging of the firmware and
be a basis for a smaller version that will be developed later (see section 4.1).

The layout of the printed circuit board can be seen in figure 4; it features
the following components
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• MDC2D: The motion detection chip described in section 1.2

• dsPIC33F: The microcontroller described in section 2.1 that reads out
the pixel values from the MDC2D, performs the motion calculation and
interacts with the host-sided software.

• FT232RL: This microchip [11] is an UART [18] to USB [10] interface.
This part is necessary because the dsPIC33F has no integrated USB
stack, but the host-sided software (see section 2.4) communicates via
the USB port. It basically tunnels an asynchronous serial commu-
nication through the USB protocol to the computer where its driver
simulates a virtual serial communication port.

• AD5391: This high precision digital to analog converter [3] is not actu-
ally necessary for normal function of the board because the MDC2D has
an integrated bias-generator that has been proven to work correctly.
It has been included nevertheless for developing firmware code han-
dling the AD5391 that can be used in further work featuring the same
microcontroller. In the final design this chip is only used to provide
the bias Vrefminbias, because the corresponding node is internally
hooked up to a wrong connection, making it impossible to bias the
gate of the attached nFET transistor with a subthreshold value.

• TPS79333: Two low-noise linear voltage regulators [7] were used for
providing a separate analog and digital power supply.

The PCB consists of a top layer, a bottom layer and two inner layers; it
was designed using Altium Designer (Winter 09 Edition), manufactured by
PCB Pool1 and soldered by hand, without using a reflow oven.

The routing of the new connections (the left half of figure 4) was done by
hand and the analog signals (scanvrecep, scanvlmc) were routed in a way to
avoid crossing of digital signals. Care was also taken that the high frequency
digital signals (especially the connection between the dsPIC33F and the
FT232RL) were kept as short and straight as possible. The two inner layers of
the PCB make up for the different power planes and are separated in digital
and analog regions. This was hindered by the fact that the AD5391, the
dsPIC33F and the MDC2D all feature analog as well as digital pins and the
other considerations constrained the free placement of these components.
The FT232RL and the TPS79333 were kept next to the USB port that
also constitutes the board’s only power source. All bypass capacitors were
placed as close to the respective pins as possible and the resistance of the
main power connections was minimized by using copper pours and multiple
vias wherever possible.

In further use of this design, the following points should be considered

1http://www.pcb-pool.com
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• It is already mentioned in [17] that the MDC2D is not packaged correctly
(silicon die out-of-center) and therefore the lens has to be mounted
horizontally and adjusted to an off-center position by hand to get as
much light onto the chip as possible.

• When soldering the parts of the board, TPS79328 were used instead
of the originally planned TPS79333, resulting in a power supply of
Vdd = 3.28 V instead of Vdd = 3.33 V . This difference of 50 mV
does not affect the digital part and most of the analog, but it results
in a reduced gate-source voltage of the pFETs when their operating
point is set by the AD5391(refer to [17] for the optimal voltage biases).
The current biases for the internal bias generator need not be adapted
because they produce themselves voltages relative to Vdd.

• As mentioned above, the AD5391 is not needed in a new design; the
bias Vrefminbias does not need to be set very accurately and could
be provided by a resistive voltage divider.

• The readout of the pixel values is quite noisy (see section 3.1). This
could probably be ameliorated by re-routing some of the wires, re-
ducing the number of vias and keeping delicate signal lines short and
further away from digital signals.

• The connector used for programming the dsPIC33F is too close to the
USB connector. In the current PCB, the connectors emerge on the
backside to fix this problem.

2.3 Firmware Design

The main purpose of the program running on the dsPIC33F is to read out
the pixel values from the MDC2D and calculate the global motion vector. For
developing this, a more general framework had first to be built that could
interact with the computer as well as with the MDC2D so that the read-out
from the chip could be visually verified and the calculated motion vectors
could be compared to motion vectors calculated on the computer. Besides
fulfilling this task, the firmware should also be reusable for further projects
using the same setup.

When creating this new firmware from scratch, a major task was to
develop a bidirectional channel of communication with the computer (see
section 2.4). The dsPIC33F has an UART (universal asynchronous re-
ceiver/transceiver) interface that allows bi-directional exchange of asyn-
chronous data over two serial lines with another chip. On the PCB developed
for this project, the FT232RL tunnels this asynchronous data over a USB
interface to the computer, where the appropriate driver (that is included
in most operating systems, because this chip is so wide-spread) emulates a
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Figure 4: Layout of the PCB, showing connections on top (red), connections
on bottom (blue) and overlay (black); the two inner power planes are not
shown for the sake of clarity; the yellow polygon indicates the part of the
power planes that is dedicated to the analog power supply
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RS232 interface, over which data can be exchanged with the microchip; see
figure 5 for an illustration.

This bidirectional interface can be used to send/receive date to/from
the computer. In this project, the UART communication speed was set
to 618984 baud (the available baud-rates are a function of the microcon-
troller’s clock speed). Because this is a relatively slow speed compared to
the 40 MIPS at which the dsPIC33F runs, it would be very inefficient to
stream data via blocking input/output routines. In this project, the mi-
crocontroller’s direct memory access (DMA) capabilities were fully utilized
and the streaming of large chunks of data – such as frames – is done by the
DMA module while the microcontroller’s core can perform other tasks.

As in any communication, transmission errors can occur and because the
UART interface implements no means of error correction, it can happen that
single bytes of the data stream get lost and a system for resynchronization
must therefore be implemented in software. In this project, all data is
streamed in simple messages (see figure 6) that allow verification of the
integrity of the message frame and a fast recovery in case some characters
are unexpectedly lost.

The computer controls the dsPIC33F by sending commands over this
serial interface and gets answers in return, indicating success or failure of
the requested operation. The original implementation of the RS232 stan-
dard includes two special lines (RTS/CTS) that can be used for hardware
flow control (i.e. indicating when new data can be sent/received). The cur-
rent design does not need any flow control, because it is not critical when
some few messages are lost due to a buffer overrun, and uses one of these
lines (RTS, see figure 5) in a different way: the computer signals that it will
send a command by asserting the RTS line. The firmware then immediately
executes a interrupt service routine (ISR) that parses the incoming com-
mand and reacts appropriately. Asserting a special signal line when sending
a command has two advantages: First, the firmware reacts to the command
even if it is stuck in some unexpected state, because the ISR is executed
independently. Second, because the command data is sent while asserting a
special line, it can be seen as “out-of-band” data and it would be possible
to stream data from the computer to firmware and at the same time trans-
mitting commands, although such a streaming was not used in the current
project.

For details on the interaction between the microcontroller and the MDC2D as
well as the AD5391 see ?? or refer to the documentation included in the
firmware. The calculation of the global motion vector is explained in section
2.5. One interesting implementation detail can be seen in figure 7. Instead
of looping through the 20 × 20 pixel array in the main loop, digitizing the
analog values and writing them into the RAM, the dsPIC33F only sets up
a precisely timed ISR that in turn triggers an automated ADC conversion
(resulting in a switch being opened, disconnecting the ADC’s sampling ca-
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Figure 5: The left side of this figures represents the PCB with
the dsPIC33F that communicates over its UART interface with the
FT232RL that in turn tunnels the serial data over a USB interface to the
computer, where a driver emulates a serial line from which the stream can be
read. The RTS signal can be asserted by the host-side software and results
in a change of potential on a digital pin on the microcontroller’s side.
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0x????
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length bytes
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Figure 6: This figure illustrates a short extract of the message stream. A
message consists of a minimal header (in red), 6 bytes in total (i.e. three
16 bit little endian words), followed by a variable message content (green),
whose length is indicated by the length field. The marker can be used to
identify the beginning of the message header in case the synchronization is
lost.

pacitor from the input pin), before moving the MDC2D’s scanner to the next
pixel. The converted value is automatically written to the RAM by DMA.
This results in a precisely timed sampling of the analog values (the sampling
interval is set by the timer calling the ISR) and a minimal workload on the
dsPIC33F’s core that can perform other computation during the frame ac-
quisition.

2.4 Host-Side Integration

The firmware described in section 2.3 streams live images and global motion
vectors to the computer (the “host”). The computer on the other side has to
instruct the dsPIC33F how the MDC2D should be read out (e.g. what channel
to use, how fast the scanner should be moved, etc) and displays the captured
data for visual control, while comparing the computed motion vector values
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Figure 7: The code executed in the main loop is highlighted in red; after
setting up the timer ISR, the main code continues normal execution, while
a periodically executed timer interrupt triggers the conversion of the analog
signal to a digital value that is then stored into RAM by the DMA module,
while the MDC2D’s scanner is moved to the next pixel to be converted (by
the next timer interrupt).

with the more precise values obtained by performing the algorithm with
floating point numbers.

All host-sided software communicates over a RS232 interface with the
dsPIC33F (see figure 5). This serial interface is emulated by a driver called
VCP (for virtual COM port) on Windows and a loadable kernel module
called ftdi sio (for Future Technologies Devices International serial in-
put/output) on Linux. This implementation was chosen for its apparent
simplicity. Standard serial ports have been supported in all operating op-
erating systems for a long time and there are many tools that can be used
to communicate with a device over a serial line using a text-based protocol,
such as the one used in this project. Refer to figure 8 for an overview of the
different software layers that are used to communicate with the dsPIC33F.

Because the dsPIC33F communicates over a UART interface with the
FT232RL, there is no possibility to receive any data apart from sending
it through the serial line or by asserting one of the two hardware flow-
control lines (RTS/CTS). Furthermore, the serial communication settings
(baudrate, parity, stop-bits) have to match on both sides. If these settings
are not adjusted correctly, no data can be sent/received over the serial line.

All host-side software from this project is included in jAER [5]. The
package ch.unizh.ini.jaer.projects.dspic.serial implements the asyn-
chronous communication with the dsPIC33F. After choosing a serial commu-
nication port and setting the baudrate, Java programs can use this package
to send commands to the microcontroller and they are asynchronously no-
tified by any incoming messages, answers to previously sent commands or
unexpected events (such as a loss in synchronization or a time-out of an
expected answer). This package also contains an example application that
can be used to control the firmware via a command-line, while dumping the
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dspic.serial.StreamCommand

gnu.io.*

libSerial.dll libRxtx.so
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PIC33F_COM_HardwareInterface
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Figure 8: This figure shows the different layers that are used in the host-side
software to enable a Java application to interact with the dsPIC33F. The
class colored in green is the main interface between the actual application
(in this case the motion viewer from the jAER package, but this could be
any other Java application) and the underlying serial interface/operating
system. In this case, the rxtx package was used (colored in red), but this
part might be exchanged by FTDI’s D2XX driver in the future for better
Linux support.

received answers and providing a simple display for the streamed frames and
the global motion vector.

Tobi Delbrück developed a Java framework for other motion detection
chips that is capable of displaying streamed data and interactively changing
bias configurations, called MotionViewer (also included in jAER [5]). Reto
Thürer extended this software so it is capable of performing different motion
algorithms on the streamed data (among others the one presented in section
1.3 and used in this project). Therefore, a new hardware interface called
dsPIC33F COM OpticalFlowHardwareInterface was integrated into jAER
that enables the framework to use the new hardware described in section
2.2 into the existing application. Also, some new features, such as recording
and a command-line interface, were added specifically for the new hardware
(in a new GUI element called the hardware interface control panel).

A drawback of the presented implementation is that some operating
systems (e.g. Linux) do not support arbitrary baudrates and therefore
cannot communicate with the dsPIC33F at 618984 baud. It is still pos-
sible to use the framework and stream data at a standard 115.2 kbaud,
but this is not enough to stream frames at 60 fps. This problem could
be fixed by using FTDI’s D2XX driver that is available for Linux, Windows
and Mac OS X. Because all host-side software strictly adheres to a layered
communication stack (see figure 8), it would be sufficient to change some
code in the dspic.serial.StreamCommand class when the driver was to be
switched. All the other parts would continue to work as before.
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2.5 Optical Flow Algorithm Implementation

The equations (8) to (12) from section 1.3 must first be reformulated for
discrete values; in the remainder of this report, the reference amount is
set to 1 pixel (i.e. ∆xr = ∆yr = 1) and the following abbreviations are
introduced:

f∆x(x, y) = f2(x, y)− f1(x, y) (16)

f∆y(x, y) = f4(x, y)− f3(x, y) (17)

∆f(x, y) = f(x, y)− f0(x, y) (18)

a =
∑
x

∑
y

(f∆x)2 (19)

b =
∑
x

∑
y

f∆x · f∆y (20)

c =
∑
x

∑
y

(f∆y)2 (21)

d =
∑
x

∑
y

∆f · f∆x (22)

e =
∑
x

∑
y

∆f · f∆y (23)

As the dsPIC33F supports additions, subtractions, multiplications and
divisions, equations (19) to (23) and finally (15) could all be solved by using
its arithmetic logic unit (ALU), which supports signed/unsigned calculations
with integer as well as fixed point fractional numbers. In this project, a
special approach has been chosen to exploit some of the microcontroller’s
features:

1. The digital signal processing (DSP) unit has a powerful multiply accu-
mulate (MAC) instruction that is capable of fetching data from within
two different memory locations, performing a 16×16 bit multiplication,
adding the sign-extended result to a 40 bit register as well as updating
two registers holding memory locations, all in one instruction cycle.

2. The microcontroller is equipped with 16 kB of RAM, allowing generous
storage of intermediate results.

3. By performing all calculations with integers, the inaccuracy that is
inherent to the microcontroller’s limited 16 bit wide number represen-
tation is minimized.

Using the MAC instruction conditions an important constraint on the
memory organization of the data (see figure 9) : because two words of data
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can only be fetched at the same time as performing a multiply accumulate
instruction if they are located on two different memory buses, all different
combinations of data words used in the discrete integrations of equations
(19) to (23) must reside in these different memory regions (called X and Y ).
This was achieved by storing ∆f in the X data region as well as in the Y
data region.

Using integers for the intermediate results is problematic, because dif-
ferent overflows can occur that all must be handled differently. The current
implementation handles the following overflows

• ∆̂x, ∆̂y : by using d/2 instead of 2d and e/2 instead of 2e in equa-

tion (15), the algorithm actually calculates ∆̂x/4 and ∆̂y/4 internally.
When adding the sign bit before returning the results as signed frac-
tionals, these values are shifted by one bit to the left and therefore
|∆̂x/2| as well as |∆̂y/2| must be smaller than one. This restriction
poses no problem in the application of the algorithm, since values of
|∆̂x|, |∆̂y| that are bigger than 2 become very imprecise due to the
algorithms limitations (see section 1.3).

• a from (19) : if a should overflow, it is shifted until it fits into one
word and all the values divided by a (when resolving (15)) are simply
shifted by the same amount of bits before performing the division.

• denominator and nominator of ∆̂y in (15) : should one of these values
overflow, they are simply both shifted in parallel prior to the division
until they fit into one word.

• c from (21) : is only stored in the MAC register and can therefore be
up to 40 bits long.

Some other overflows, such as of b in (20) simply result in an error. This

also happens for other rare conditions, such as a = 0 or c− b2

a = 0. For all
the data gathered during this project, this conditions were very rare and the
work to prevent them was therefore not deemed necessary (see section 3.2).
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Figure 9: Block Diagram of DSP Unit (taken from [13])
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Figure 10: Setup for quantitative assessment of the global motion calcula-
tion.

3 Results

3.1 Global Optical Flow Estimation

The quantitative recordings were performed using an old Toshiba 610CT
notebook with a monochrome passive LCD screen, running a program called
STIMULUS that was previously developed at INI for testing motion detec-
tion chips. The visual stimulus consisted of high contrast bar gratings with a
sinusoidal intensity gradient moving in all four directions at varying speeds.
The chip was mounted with 4 mm lenses from Computar (1 : 1.2, 1/3) and
the focus plane was adjusted to the screen. The setup can be seen in figure
10. The biases used for the recordings are stored in the file MDC2D dsPIC.xml

and can be found in the jAER [5] project’s bias directory.
The speed scale used in the plots is arbitrary, but linear: a speed of 1

corresponds to 7.25 cm/s on the LCD. The plotted ∆x,∆y values are the
output from the algorithm (i.e. from solving the matrix in equation (14)).
Because the same ∆t = 20 ms is used in all plots (apart from figure 12
the left-hand plot in figure 11), these values scale directly with the actual
global motion. In order to reduce a recording of motion vector values to
a single point, a normally distributed probability distribution was assumed
and the center of this distribution as well as the putative standard deviation
are plotted. Unless noted otherwise, this calculations were done on the raw
data of the flow computation on values read from scanvlmc; in some cases
(such as in figure 14 and the right side of figure 16), the data was also
averaged in time with a FIR filter with the coefficients [0.2 0.2 0.2 0.2 0.2].
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Figure 11: An extract of a recording comparing global motion calculations
performed on the computer [17] and on the dsPIC33F. At 25 fps (left plot),
the recordings are perfectly equal, because the host sees the same pixel data
as the firmware and the calculations therefore match. On the right side, the
framerate was increased fourfold. The computer now misses some frames
(marked with a red x at the top of the plot) due to the jAER polling at only
60 fps. This results in a overestimation of the movement by the computer.
These two recordings also illustrate how the ∆x and ∆y decrease as ∆t is
decreased while the same stimulus is shown.

In a first step, the global flow results of the global flow computation
from the firmware were compared to the values calculated on the computer.
Because they are identical (as can be seen in figure 11), all results mentioned
in [17] can in principle also be applied to the new hardware.

The algorithm is expected to give a precise estimate of the global motion
only as long as the ∆x,∆y are below 1 pixel/∆t [15]. This finding is illus-
trated in figure 12. To assess the linearity of the global motion estimation,
recordings over some seconds2 were done for all four directions over a range
of different speeds. The results of these measurements can be seen in figures
13 and 14.

The same data that was used to plot figures 13 and 14 can be seen in
figure 15, where not only the global motion vector’s length, but also its di-
rection was plotted. Despite the linearity of the length shown in the previous
figures, there is apparent non-linearity regarding the global motion vector’s
direction. A possible explanation for this aberrations could be the chip’s
misalignment (see section 2.2) and a resulting blurring and/or distortion in
some parts of the optical sensor (see figure 18). These non-linearities might
also be the source of the different slopes of the linear fits in figure 13.

2longer than 4 seconds for every measurement with a mean of 10 seconds
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Figure 12: Shows how the motion estimation saturates as the real motion
vector exceeds 1 pixel between two adjacent frames. The recording was car-
ried out at 25 fps in order to achieve saturation at relatively low speeds that
still produced clear images on the LCD screen (this was assessed qualita-
tively by looking at the frame data).

3.2 Hardware Performance

The PCB from section 2.2 was designed with three different power planes:
analog, digital and “pad” (digital supply for the MDC2D). Because these nets
are connected to the respective analog/digital voltage regulators with a
jumper, the power supply for the different parts of the board can be in-
terrupted and supplied by other means. For measuring the supply current,
each of these connections was opened and a external power supply was con-
nected over a 100 Ω resistor. The voltage was then regulated to reach exactly
3.28 V (corresponds to the operating voltage generated by the TPS79328)
and the voltage drop over the resistor was measured and converted into
current.

The results of this measurement – performed in normal operating condi-
tions (streaming frames and calculating global motion vectors, without any
energy saving enabled) – can be seen in table 1. Because three different chips
are connected to the same analog power net, their respective current drain
from analog Vdd could not be assessed directly. When all the MDC2D’s biases
are turned off (by pulling its pin pd high), its power consumption approaches
zero. The remaining current drain from analog Vdd is then mainly due to the
AD5391 and the analog modules of the dsPIC33F, while the motion chip’s
power consumption is represented by the difference in the measurements.
The FT232RL’s power consumption was not measured, because it has to be
powered from the USB cable and because it is only present on this eval-
uation board. Also, the MDC2D’s digital power consumption could not be
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Figure 13: These plots show the average length of the motion vector (red
dot) as well as the presumed standard deviation (vertical black line) for
different recordings at varying stimulus speeds. The upper figures show the
results for horizontal motion (left plot leftwards, right plot rightwards) and
the lower row shows the results for vertical directions (left plot upwards,
right plot downwards). The linear fit (black dashed line) was done on the
values with a vector length below 0.8 pixels/∆t. As expected (see figure 12),
the motion vector is underestimated at values > 1 pixel/∆t.
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Figure 14: Shows exactly the same data as figure 13, with the only difference
that the raw data of the recordings was averaged over 5 frames, resulting in
a much smaller deviation from the mean (see also figure 11).
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Figure 15: This plot shows a subset of the data that was already used
to produce figures 13 and 14, but showing the mean of ∆x as well as ∆y
and their respective presumed standard deviations. The red dashed circles
correspond to the mean of the length of the global motion vector in the four
directions at the same speed.
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Figure 16: This graph shows the response to a sudden onset of motion.
The transition from one steady state to the next is achieved in some few
frames and a temporal averaging with 5 FIR coefficients does not noticeably
delay this response (the individual graphs encode the same information as
in figure 11).
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Figure 17: Color scale used for all the figures representing raw frame data;
1.00 corresponds to aVDD = 3.28 V and 0.00 corresponds to aVSS = 0 V ,
as measured by the dsPIC33F on its analog port.
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Figure 18: This figure shows snapshots of a moving bar stimulus in the four
directions (top-left: leftwards, top-right: rightwards, bottom-left: upwards,
bottom-right: downwards). The high-pass filtering property of the LMC
circuit is illustrated by the fact that the leading edge creates a stronger
signal. Although hard to see, it seems that the left border as well as the
uppermost part of the picture are slightly out of focus (the blurred image
would result in less contrast and therefore a smaller signal). Furthermore,
the horizontal bars seem slightly bent (with a convex curvature upwards;
this effect is less visible in the bars moving downwards due to their contrast
enhancement at their lower edge). These findings could be an explanation
of the non-linearities that can be seen in figure 15.
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Chip Measured Current Power Consumption

MDC2D (analog) 2 mA 6.6 mW
dsPIC33F (digital) 50 mA 164 mW
other analog 16.8 mA 55.1 mW

Table 1: Power consumption of the different parts of the PCB; “other ana-
log” is mainly the AD5391(the dsPIC33Fis not expected to draw a substantial
current from its analog Vdd).

determined, because analog and digital power supplies are not completely
separated on-chip and the digital supply current, which is expected to be
very small compared to the analog supply current, is therefore provided
indirectly by the analog rail when “pad” Vdd is disconnected.

In total, the current design is expected to consume approximately 230mW
at 3.3 V (excluding the FT232RL). But this figure has to be approached with
caution, because the dsPIC33F’s datasheet [13] cites an operating current
of up to 74 mA. The power consumption of a new PCB design (see section
4.1) can easily be optimized by omitting the AD5391.

The firmware performance was assessed as follows: first, a very precise
timing function was developed in assembler. After verifying the code in the
MPLAB simulator (the clock speed of the simulator was set to 80 MHz to
match the 40 MIPS on the actual device), the timing routine was used to
generate a 10 min delay on the hardware which was in turn controlled by
hand with a stopwatch – 10 min and 2 s were measured, which corresponds
to a relative error of less than half a percent. The timing function was used
to verify the accuracy of an interrupt-driven timer which was in turn used to
measure the performance of the code. This interrupt driven timer is called
every 10 µs when activated. This corresponds roughly to 400 instruction
cycles and the interrupt is therefore not expected to result in a significant
slow-down (the ISR executes in 6 instruction cycles and the setup and return-
to-code make up for 8 instruction cycles [12]).

During the image acquisition, the pixels are sampled individually by
performing the following steps : sampling an analog value from an analog
input pin (during this time the internal sample capacitor is filled), converting
this analog value to a digital representation and telling the MDC2D’s scanner
to multiplex the next pixel to the analog output pad. The conversion time
for a 10 bit value is 12·TAD which translates to 900 ns (75 ns is the minimum
ADC clock cycle). The sample time is set by the timer interrupt interval
(see section 2.3). Setting an interval of 2.5 µs per frame has shown to
be sufficient for moving the scanner and sampling the new value (assessed
qualitatively by comparing captured frames, see figure 19) and results in a
total acquisition time of 1 ms for a 20× 20 pixel frame.

The implementation of the motion algorithm from section 2.5 performs
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Operation time

Image acquisition 1 ms
Algorithm performace 0.12 ms

Table 2: How much time the firmware spends on acquiring one image from
the MDC2D and how long it takes to perform the Srinivasan algorithm on
two frames.

a 7 instruction long cycle over the whole frame (minus its border pixels) to
create the “reference images” and then performs 5 MAC instructions over
these arrays to calculate (19) to (23). Since these instructions take only
one cycle and because the other instructions are not repeated a significant
number of times, the whole calculation is expected to take approximately
(7 + 5) × 320 = 4320 instruction cycles; this would correspond to 108 µs
at 40 MIPS. The time stopped via ISR has shown to be 120 µs and fits
well with the estimate, considering that the estimation did not include any
divisions, bit shifting, preparation of the loops and other other glue code.

It is somewhat harder to assess the stability of the implementation, but
during the recordings of all the data for this report, the firmware didn’t crash
a single time after a successful connection to the host. For producing figure
13, 12832 messages containing pixel and global motion data were recorded.
The firmware generated 35 “overflow” errors (see section 2.3), out of which
33 were due to ∆x or ∆y being outside the maximum 2 pixels/∆t. This
leaves only 2 errors due to an “internal overflow” or division by zero.

3.3 Software Framework

The software framework that was developed for this project (see sections 2.3
and 2.4) can easily be adapted for new projects that are based on dsPIC33F

microcontrollers, use the USB port for communication and Java for the host-
side integration. The following procedure is suggested for development of
new software based on the framework presented in this report:

1. In a first step, the firmware should be adapted to the specific needs.
Please have a look at the documentation of the firmware source code
(in doxygen3 format), especially the files main.c, message.[ch] and
command.[ch]

2. For testing the new firmware, the class StreamCommandTest from the
package ch.unizh.ini.jaer.projects.dspic.serial can be used to
establish a connection, as well as sending text commands and receiving
the firmware’s answers; the set and get commands provide a conve-
nient way of dumping status informations and setting parameters. The

3a source code documentation generator; see http://www.doxygen.org
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Figure 19: These two frames were acquired with different settings for the
ISR timer interval (see section 2.3); on the left side, a setting of 5 µs per
pixel (resulting in 2 ms per frame) was used while on the right side, only
half the time was spent on sampling the the individual pixels, resulting in
an acquisition time of only 1 ms per frame. The shorter acquisition time
does not seem to adversely affect the image quality (the two frames are
not identical because they were produced by a moving stimuli that does
therefore not exactly match in two different frames).

class StreamCommandTest currently contains some GUI elements that
are specific for this project, but this can easily be changed or extended.

3. In a second step, a complete Java application can be developed, us-
ing the class StreamCommand from the package ch.unizh.ini.jaer.-

projects.dspic.serial to interface asynchronously to the firmware
for streaming messages and sending command sequences. The docu-
mentation of this class should be read carefully.

It should be stressed that the current version of the different packages
is by no means mature; it should rather be seen as a development platform
that can be used as a starting point. If this platform is used in further
projects, people working on it are kindly asked to separate their new code
into application specific tasks and general improvements of the interface that
can then be merged into the jAER tree so that new projects can be based
on those improved versions.
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4 Outlook

4.1 Miniaturization

For use of the design presented in this report on a flying platform, where
severe weight restrictions apply, the following steps should be considered to
miniaturize the dimensions, while maintaining the same functionality:

• The lenses should be replaced by lightweight plastic lenses with a fixed
focus that need to be adapted to the particular needs of the applica-
tion. Because this will change the optical properties, the results from
section 3.1 would need to be reproduced. Despite of the lower quality
of such plastic lenses, this step could eventually improve the quality of
the gathered data because the lenses could not fully be centered onto
the chip in this project, due to its off-center packaging.

• The MDC2D could be removed from its package and the bare silicon die
would then be glued on a board, connecting the pads manually with
small bonding wires.

• The FT232RL and the USB connector should be replaced by a mini-
malistic serial interface for development an debugging purposes.

• The AD5391 would not be needed anymore, because the on-chip bias-
generator can be used to set the operating point of the analog circuits.
The only bias that has to be provided externally is Vrefminbias (see
section 2.2). Since this bias is not sensitive regarding its exact value
and needs not be changed during operation, it could be generated by
a resistive voltage divider.

• The dsPIC33F used in this project could be replaced by a smaller
variant with fewer pins and depending on the architecture, the mi-
crocontroller could be used to perform different tasks, because the
implementation presented in sections 2.3 and 2.5 performs the image
acquisition and global flow estimation in as little as 1.12 ms.

4.2 Algorithm

The results that were presented in section 3.1 are certainly not sufficiently
detailed for directly using the MDC2D/dsPIC33F on a flying platform. There-
fore, the platform clearly needs to be tested for application specific require-
ments, that vary widely, depending on the exact use of the global optical
flow sensor. For example, if the chip is to be used as a sensor in a closed
loop for a control task where large angular velocities can occur and the
steering mechanism must react accordingly, the timing requirements might
be very demanding and it might not be possible to average the value in time
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Figure 20: This figure shows the same simulated 1D data as in figures 2
and 3, but this time with some added fixed pattern noise (FPN, black line
in left plot). On the right side, the effects of the FPN is not visible in the
difference between the moved and the original function, because they both
share the same noise at the same places. But it is visible in the difference
between the original function and its shifted versions, because the FPN has
also been shifted. This results in a decreased performance of the algorithm
compared with the results from figure 3

to decrease noise. In another scenario, where the sensor would be used for
odometry4, the timing requirements would be relaxed and it would be more
important to get an unbiased measurement to minimize errors of integrated
values.

As mentioned earlier (see figures 13, 14) simple averaging in time can
result in a signal that is much less noisy than the raw signal. This can easily
be implemented in the firmware, but the details of the averaging filter as
well as the adaptation of its parameters depending on the signal is highly
application specific.

The algorithm presented here is relatively robust to noise [15]. The
mismatch in the analog circuits between the different pixels of the sensor
gives raise to fixed pattern noise (see figure 21). This noise is different from
the noise explored in [15], since it disappears in the difference images of
adjacent frames (the offset of every pixel changes slowly in time), but is
included in the difference of shifted images; figure 20 illustrates this. The
results of motion estimation could probably be improved by filtering out the
fixed pattern noise.

4The use of data from moving sensors to estimate change in position over time (source:
Wikipedia)
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Figure 21: This figure shows two different types of noise that occur in the
MDC2D: the colored image on the left illustrates the fixed pattern noise (FPN)
that is mainly caused by the mismatch of the transistors in the analog pixels.
This FPN has a peak-to-peak amplitude that corresponds to approximately
25% of the peak-to-peak signal of a high contrast stimulus, such as in figure
18. Additionally, there is also some high frequency noise, as illustrated by
the two grayscale images that show the difference of two adjacent frames
(compared to an arbitrary baseline image to remove the FPN). The peak-
to-peak amplitude of the not-FP noise is relatively small (around 5% of the
signal’s peak-to-peak amplitude, corresponding to about 4× the LSB of the
ADC).

A Download, Usage

All software design and testing was done on a Windows XP SP3 machine.
Some programs used in the development are only available for the Windows
operating system. The host-side software should theoretically also work
under Linux (with an adapted baudrate, see section 2.4), but has not been
tested yet.

PCB design : the software used for the PCB design was Altium De-
signer Winter 09 Edition. This program exists only for Windows computers.
The project files can be downloaded from the following subversion reposi-
tory:

https://svn.ini.uzh.ch/repos/shih/chips/MDC2D/dsPIC33F testboard

Firmware : the source code for the dsPIC33F is contained in the
deviceFirmwarePCBLayout/dsPICserial/MDC2D subdirectory of the jAER
project[5]. Please read the README.txt and INSTALL.txt files included in
the project for further instructions.

Host-side software : all code used in this project is also included in
the jAER project; it can be found in the directory host/java/src. The
following steps should be performed to use the new PCB in conjunction
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with the motion viewer

1. Download the whole jAER trunk (at least revision #2781 that repre-
sents the state after the last commit for this project).

2. Connect the PCB to a USB port of the computer. Verify that a new
virtual serial communication port shows up (i.e. a new COMx port in the
Windows device manager or a new device called ttyUSBx under Linux).
Eventually install a virtual com port (VCP) driver from FTDI5.

3. Read the documentation of the jAER package ch.unizh.ini.jaer.-

projects.dspic.serial; it contains an executable class called Stream-

CommandTest that can be used to verify the connection to the micro-
controller, check the version of the installed firmware and control the
microcontroller via a command-line interface. If the connection could
not be established (e.g. under Linux), change the baudrate to a stan-
dard 115.2 kbaud; of course, a new firmware with the same speed
setting has to be downloaded to the microcontroller for this to work;
see the firmware documentation.

4. Start the motion viewer by executing the Java class MotionViewer-

Main MDC2D from the package ch.unizh.ini.jaer.projects.opticalflow.

5. Select the “hardware interface” dsPIC33F COM in the combo-box of
available hardware interaces in the motion viewer. Choose the right
serial port (the one was created when the device was connected). If the
jumpers between the AD5391 and the MDC2D are set, voltage biases
will be used and the “on chip biases” check-box should be deselected.
If the jumpers are not set, the on-chip bias generator has to provide
the bias currents and the check-box must therefore be enabled. Also
activate the checkbox labeled “streaming”.

6. Eventually load the biases MDC2D dsPIC.xml from the directory biasgenSettings/.
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advice from Rico Möckel (EPFL7) during the PCB realization and firmware
development were very helpful. Finally, I would like to thank my track

5http://www.ftdichip.com/FTDrivers.htm
6Institute for Neuroinformatics, http://www.ini.uzh.ch/
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ETH/University Zürich). jAER - java tools for address event
representation (AER). http://jaer.sourceforge.net. 14, 15, 19, 31

[6] IEEE. Analog VLSI Adaptive, Logarithmic, WideDynamic-Range Pho-
toreceptor, Circuits and Systems, ISCAS, May 1994. 3

[7] Texas Instruments. TPS793xx : Ultralow-noise, high PSRR, fast RF
200mA low-dropout linear regulators in NanoStar wafer chip scale and
SOT23, 2001-2007. 9

[8] Silicon Labaratories. C8051F320/1 : Full Speed USB, 16k ISP FLASH
MCU Family, 2003. 8

[9] Shih-Chii Liu. A neuromorphic avlsi model of global motion processing
in the fly. IEEE Transactions on Circuits and Systems, 47(12):1458–
1467, Dec 2000. 3

[10] Beyond Logic. USB in a nutshell. http://www.beyondlogic.org/

usbnutshell/usb1.shtml, 2011. [Online; accessed March-2011]. 9

8Eidgenössische technische Hochschule Zürich, http://www.ethz.ch

33

http://jaer.sourceforge.net
http://www.beyondlogic.org/usbnutshell/usb1.shtml
http://www.beyondlogic.org/usbnutshell/usb1.shtml


[11] Future Technology Devices International Ltd. FT232R USB UART IC,
2010. 9

[12] Microchip. dsPIC33F Family Reference Manual Part 1 : Section 06.
Interrupts - dsPIC33F FRM, 2008. 26

[13] Microchip. dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and
dsPIC33FJ128MCX02/X04 Data Sheet, 2011. 8, 18, 26

[14] M. G. Nagle, M. V. Srinivasan, and D. L. Wilson. Image interpolation
technique for measurement of egomotion in 6 degrees of freedom. J.
Opt. Soc. Am. A, 14(12):3233–3241, Dec 1997. 4

[15] Mandyam V. Srinivasan. An image-interpolation technique for the com-
putation of optic flow and egomotion. Biological Cybernetics, 71:401–
415, 1994. 10.1007/BF00198917. 2, 4, 5, 20, 30

[16] Mandyam V. Srinivasan, Michael Poteser, and Karl Kral. Motion detec-
tion in insect orientation and navigation. Vision Research, 39(16):2749
– 2766, 1999. 2
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