
Learning Goalie Robot/Semester Thesis SS07 Lang Manuel

Learning Goalie Robot

Semester Thesis SS 2007
Manuel Lang, Student Department of Computer Science ETH Zurich

malang@ethz.ch

Supervisor:
T. Delbrück, Inst. of Neuroinformatics, UNI-ETH Zurich

tobi@ini.phys.ethz.ch

This semester thesis is about a robot equipped with an asyn-
chronous temporal contrast silicon retina. The objective of
this robot is to behave like a miniature soccer goalie. It has to
block incoming table tennis balls with his arm that is con-
trolled by a standard servo motor. Furthermore, the goalie
has to learn and adjust the parameter needed to control its
arm and therefore adapt automatically to the given actual
setup. This greatly simplifies the setup of the robot and re-
duces fiddling with various parameters.

I. Introduction
Traditional vision tasks often use frame based capturing video
systems. These systems are limited by the given frame rate of
the imaging devices. Consequently, high speed applications
with short reaction time can only be implanted by increasing
the frame rate what quickly results in an immense data vo-
lume that has to be processed to achieve the given vision task.
Of course, this yields to increased component costs and de-
creases performance indices like power consumption.

Our approach for this goalie application is therefore to use an
asynchronous event-based neuromorphic inspired silicon reti-
na. [1], [2] This silicon retina differs from standard video cap-
turing devices, by submitting local contrast changes asyn-
chronously immediately when they occur instead of a frame
based transmission. This is done by using a protocol called
address event representation (AER) [3], which encodes the
type of event (in our case increasing or decreasing contrast)
and the position of occurrence (in our case the pixel position
of our 128x128 pixel retina). This enables us to use standard
PC equipment and still achieve fast reaction times.

Normal controlling tasks often use a closed feedback approach
to cancel out typical and often complex setup intrinsic va-
riables. This approach is highly practical for analog or hard-
ware based controllers, but not for a software driven ap-
proach. In a software-driven approach this means to perma-
nently read out the actual position and permanently change
the controlling parameters to achieve the desired actual posi-

tion(polling). Moreover a servo motor already implements a
control loop. Hence, we tried to implement a better approach
that learns the relationship between the servo motor input
and the actual output directly. As a result, the software con-
troller can directly apply the needed controlling values to
achieve a given desired output, without having to observe and
feedback the actual position of the actor (in our case the goal-
ie arm). This simplifies the real-time positioning but comes
with the cost of an additional learning task that has to be per-
formed.

This work is going to show how to combine this AER based
imaging approach with the learned controlling approach. Fur-
thermore, we will describe the actual implementation and
resulting changes to the JAER project [4] to implement this
goalie application.

II. Setup
The silicon retina, which acts as the imaging device is mounted
on the upper edge of a box that represents the goal. This
means the camera is around 30cm above the table. On the
bottom side of the goal box we mounted the servo motor so
that the goalie arm that is parallel to the table is about 4 cm
above the table.

Figure 1 Picture of the goalie Setup

mailto:malang@ethz.ch
mailto:tobi@ini.phys.ethz.ch

Learning Goalie Robot/Semester Thesis SS07 Lang Manuel

The length of the arm is about 30cm and a plastic hand is
mounted at the end so that this hand is normal to the table
and can be used to block the incoming balls. The box width,
arm length and resting angle of the servo motor have to be
adjusted in a way that the operational angle of the servo mo-
tor is large enough to cover the whole range of possible in-
coming balls. Small variation around the mid angle of the ser-
vo motor should result in an acceptable unconstrained move-
ment in the visible area of the camera. However, it has not to
be in the middle of the goal as this parameter is part of later
learning.

The camera uses and 8mm wide range lens. For the self learn-
ing and calibrating functionality the camera has to capture the
arm, hence we mounted the camera so that the arm is visible
in the lower 30 pixels of the captured frame. The remaining
part of the frame is used to track incoming balls. See Figure 5.

Figure 2 Schematic of the setup. USB connects a PC, Silicon
Retina and servo motor

Both, the silicon retina and servo motor board are connected
to a PC running the jAER software, which implements the ac-
tual tracking and controlling logic. The servo motor USB board
converts commands over USB to a PWM signal that is sent to
the servomotor.

III. ServoArm Class

Introduction
A Java class called ServoArm abstracts the movement and con-
trolling of the servo arm. This class exposes a set of simple
function that one can use to move the robot arm without hav-
ing to deal with the insights needed to do so.

This class therefore implements the learning, which calibrates
the servo arm. It can be triggered from outside to invoke a
learning cycle.

It also allows logging the actual and desired arm positions to
the Data Window that can than show this data as graph or a
table.

Class design

Public Functions

int getActualPosition()

Returns the current position of the arm in pixels

int getDesiredPosition()

Returns the position the arm is going to move to in pixels. This
value can be set by the setPosition function.

void setPosition(int Pos)

This function enables the servomotor when relaxed and starts
a movement to the given position Pos. To do so the learned
model is applied. When a learning cycle is in progress, it is ab-
orted immediately to carry out the movement.
This function returns instantly, in most cases before the given
position is reached. If a subsequent call is done before the
final position of a previous call is reached, the current move-
ment is cancelled and the newly specified is carried out.

void startLearning()

Starts a learning cycle. During learning the servo arm is going
to move and therefore cannot stay relaxed. Learning is done
in a separate thread. Hence, this function returns instantly.

void stopLearning()

this function behaves like the function relax()

void relax()

This functions stop the movement of the arm immediately and
disables the servo motor. This means, canceling of any sche-
duled movements and aborting of any running learning cycle.

void startLogging()

This function starts the logging functionality. After it is called,
the actual and desired position is logged to Data View Win-
dow. Logging is done in a separate thread. Hence, this function
returns instantly.

void stopLogging()

Stops the logging thread and deregisters data source in data
Data View Window.

Super Class and Interfaces

Class EventFilter2D

ServoArm class has to register as filter, because it has process
events during learning. See next chapter for details

Interface Observer

To initialize the filter.

Interface FrameAnnotater

Use to render useful information of filter state. It displays a
bar for the desired and actual position of the arm. It also visua-
lizes the arm tracking.

Interface PnPNotifyInterface

Interface is used to handle events that occur when dealing
with the servo motor, like plug or unplugging the servo board.

Learning Goalie Robot/Semester Thesis SS07 Lang Manuel

Implementation Overview
The main part of the class is separated in two parts. The fron-
tend, which exposes the public functions specified above, and
a back end of private functions that handle the actual servo
motor controlling.

The frontend functions are dealing with the logic needed to
control the motor. They all operate on a higher abstraction
level and use meaningful units like pixels to operate on. These
functions are implementing the logic to enable the motors,
start learning stop learning and so on. The positioning function
setPosition uses the private helper function setPositionDirect
as mid-layer. This function does not change the state (i.e does
not stop learning), but does use the learned model to calculate
the input value for actual hardware controlling function set-
Servo. The learned model is encapsulated the function Posi-
tionToOutput.

All frontend functions check if servo motor hardware is prop-
erly working and connect before any other command is sent to
the hardware. However, the relax function does not automati-
cally reconnect to the hardware, because we assume that if
we do not have an open connection to the servo board, we
don’t want to disable any motor.

The ServoArm class uses two additional threads that can run
when needed. The logging and the learning thread. Both
threads can be control by the corresponding start and stop
functions. These functions more or less start and stop the
threads. Both stop functions are blocking until the thread is
actually stopped. Furthermore, the stopLearning function also
disables(relaxes) the motor.

The logging thread simply registers two data sources to the
Data Window; one ArrayList of data for the actual position and
one for the desired position. After registering, the thread en-
ters a loop which adds a new element at the end of the list.
This is done in a specified interval, currently every 20ms. To
save memory the logging data is cleared when 20000 elements
are recorded. (This leads to a start over of the graph plot in
the Data Viewer Window). Surely, all accesses to ArrayList
have to be synchronized to avoid a race condition with the
Data Viewer Windows, which reads out the same lists for
painting the plots or displaying the data table.

Learning

Motor value and Pixel value relationship
The actual, learning model is surprisingly easy. We could
achieve good results by simply using a linear function with two
parameters. This means the relationship between the pixel
position and motor input is given by the linear function

Figure 3 Shows the result of the learning. Each Point was sam-
pled during learning. The line shows the linear relation be-
tween observed positions and motor input values.

Where is a value between 0-1 that is sent to the mo-
tor, is the given desired position in pixels and

 are the parameter that are going to be learned.
The value describes the absolute angle that the ser-
vo motor should try to reach (. Because, the
desired position is the projection of the robot hand (end of the
arm) to the x axe, mathematical justification would lead to a
trigonometric relationship between this projection and motor
angle, however this linear model proved to be accurate
enough.

Sampling and Linear Regression
The learning of this linear model, therefore reduces to simple
statistic problem namely fitting a regression line. First, we
have to gather the samples we want to fit this model to.

This sampling is done by moving the robot directly to a known
angle (send a value between 0-1) and then read out the ob-
served position of the hand. We describe the tracking of the
robot arm in more detail later, but for now assume we have
access the observed position of the arm in pixel as it is seen by
the silicon retina. Though, we limited our self to a smaller set
of possible input angles. Instead of using the completely poss-
ible range from 0 to 1 we let the user specify the sampling

range (setLearningLeftSamplingBoundary and

setLearningRightSamplingBoundary). This is done
to account for different setups and to avoid sampling outside
the meaningful range for a given setup.

For every sample cycle, we can construct a Cartesian
point (where). If we have a cloud of such
samples, we can start to fit our learning model(linear function)
to these observations.

Learning Goalie Robot/Semester Thesis SS07 Lang Manuel

This is done be utilizing the well-known statistic formulas [5]:

Then the two unknowns of the linear equation are:

To save memory and calculation time, we limited the number
of stored samples to 100. When this number is reached the
oldest sample is removed.

Implementation Details
As already mentioned, learning is implemented as an extra
thread inside the ServoArm class. The thread is initiated when
the function startLearning is called and stopped when stop-
Learning is called. The class implementing this thread is a pri-
vate subclass of ServoArm. That sub class is instantiated only
once when the ServoArm class is instantiated and reused for
later invocations of the thread. The advantage of this ap-
proach is that this learning class can store and remember re-
sult across different learning cycles. Specifically, this is done to
remember the samples of previous learning cycles.

A single learning cycle works as followed:

1. Check if learning is still necessary
a. Move arm to random position by using high-level

pixel based moveFunction
b. wait for 2 seconds
c. read out actual position of hand
d. repeat a-c 5 times and calculate average error.
e. stop learning if average error is good enough

(smaller 5 pixels)
2. Select a random number inside sampling range
3. Send this value to servo motor (directly)
4. wait 1 second (time to move)
5. read out actual position of hand
6. add sample to set of samples (remove old sample)
7. if we have 8 new but at least 2o samples then do li-

near regression and go to 1
8. else loop back to 2

Learning is stopped whenever the learned model is accurate
enough or an interrupting movement has to be performed.
When learning is stopped, it does not start automatically
again.

Learning Parameters
The only parameters for learning exposed to the users are the
sampling range order. Normally these values are around 0.4
for the left and 0.6 for the right border.

There is no other parameter that has to be tuned by the user;
however, there are few internal parameters. First, we us some
fixed time values during learning whenever we have to wait.
Secondly, we have a fixed accuracy value of five pixels when-
ever we check for the learning error and a fixed number of 5
runs for averaging this error. When collecting the samples, we
have some additional internal parameters like, maximal num-
ber of samples(100) and number of new samples before a new
model fitting is performed (8).

Tracking
ServoArm class is inherited from EventFilter2D. This allows the
class to be put in the filter chain. This is needed to track the
servo arm of the goalie.

We use the already implemented tracker RectangularCluster-
Tracker. This tracker implements the normal filter interface.
Therefore, we can forward any AER events we get from the
retina to this standard tracker. However, first we use a XYTy-
peFilter to limit the input to the rectangular range were we
expect the servo arm to be. Normally, this will be inside
30pixels range from the bottom and is specified by the user.

The tracker and the XYType filter are put into an enclosed fil-
ter chain of the ServoArm class. Therefore, we can easily for-
ward events to both of them. It is important to realize, that
the ServoArm filter itself is only an observing filter. Hence, any
events passed to ServoArm should go through completely un-
changed. Especially, the XYTypeFilter should not throw any
events away, since they are needed for later processing (i.e.
the goalie class)

Overshoot Protection

Introduction
Tests showed that the goalie arm tended to overshoot. That
means, when the arm is moving to a specified position (or an-
gle) it first moves a bit further, before the control loop inside
the servo motor starts to correct for this error. This leads to a
swinging behavior around the desired position.

Consequently, we had to improve our movement algorithm to
account for this behavior. The idea is simple; we do not send
the final desired motor angle directly to the servo motor. In-
stead, we divide each movement in two steps. First, we sent
an angle that let the arm move 80% of the desired movement.
100ms after sending this intermediate step we send the final
position to the servo motor. By doing this, the servomotor
tries to reach the 80% position first and has already slowed
down when the next command is sent. The desired final posi-

Learning Goalie Robot/Semester Thesis SS07 Lang Manuel

tion is then reached with slower velocity and as a result over-
shooting is reduced.

Implementation
Java provides a timer functionality. This allows to schedule
tasks for later execution. We used this functionality to imple-
ment the overshoot protection. Whenever a new desired posi-
tion has to be applied, we send the 80% intermediate step
directly to hardware. Then we schedule a function that will
send the final movement. The delay to this execution is set to
100ms. We also set the current desired position value, which
is a private field of the ServoArm class, already to the com-
plete 100% position value.

After 100ms the timer runs our scheduled function. This func-
tion simply sends the final position to the servomotor. Howev-
er, we first have to check if the desired position is still the cur-
rent one. It could have happened that in the meantime a new
movement already started and therefore this function should
not send the command down anymore. We can check for this
case by comparing with the current desired value field that
should still have the value stored that was saved when this
function was scheduled.

Whenever the motor is going to be relaxed, we also have to
clear the list of scheduled functions to avoid reactivation.

Figure 4 The overshoot behavior of the arm. Note the interme-
diate steps in the desired positions, which are resulting from
the overshoot protection.

Future work
This servo arm implementation only supports one servo mo-
tor. Future work could be to control more than one motor,
which means to allow more joints. The difficulty of the prob-
lem would then increase to an inverse kinematics problem [5].

A more dimensional movement would also allow more precise
controlling of the incoming balls. This could lead to a system
able to play more advanced games like real table tennis. [6]

IV. Goalie Class

Introduction
The goalie class implements the logic needed to behave like a
goalie. Namely, tracking incoming balls, calculating the strike
position and using the ServoArm class to move the goalie arm.

The goalie class was already implemented by a previous
project. [4] Therefore, we could reutilize most parts. However,
since the control of the servo motor was moved to the Ser-
voArm class, we could clean up the obsolete code.

The goalie class also has to decide when to start a new Ser-
voArm learning cycle and when to relax the goalie arm.

Implementation
The goalie class is inherited from EventFilter2D. This enables
us to process any event sent by the retina. Again, it’s impor-
tant to realize that the goalie class is an observing filter and
therefore should not change any incoming events.

The goalie call utilizes the XYTypeFitler, RectangularCluster-
Tracker and ServoArm Class. The incoming stream of events
are routed into two different sub chains. One sub filter chain
only includes the ServoArm class. This is used for tracking the
servoarm and therefore allowing goalie to control his arm.

Figure 5 View from the silicon retina. Blue boxes show tracking
area for arm (lower box) and balls (upper box). Tracked objects
are annotated. The disired (white) and actual (blue) position of
the arm is shown in the middle.

Learning Goalie Robot/Semester Thesis SS07 Lang Manuel

The second filter sub-chain is used to track incoming balls.
Hence, the XYTypeFilter is used to crop away the servo arm.
After that the remaining events are passed to the Rectangu-
larClusterTracker filter. This filter is parameterized to effec-
tively track incomings balls. These settings can be obtained
from the previous goalie implementation.

The goalie now calculates the expected point of impact of the
the table tennis balls, which are tracked by the tracker. This is
done by simply extrapolating the linear movement of the balls
and intersect it with the y=30 line, which is the tangent line to
the servo arm action scope. We also can calculate the ex-
pected impact time and therefore react first on the ball that
will impact soonest.

Whenever a ball is tracked, a timer is reset. If no balls are
tracked and the timer reaches a user predefined value a new
learning cycle in the servo arm class is invoked by the goalie
class. Therefore, learning starts when no playing is going on.

The timer is also used to relax the motors when no balls are in
the play field after a short timer.

V. Data Viewer Window

Introduction
We added a new user interface window to jAER, which allows
other part/classes of the program JAER to register data
sources. This data source is then plotted or displayed in a table
by this new data viewer window.

The data viewer window also redirects the normal system con-
sole output, which enables the user to view them inside the
user interface instead of having to start the program from a
console.

For that reason, the user interface displays three register tabs.
One for displaying the registered data sources in a graphical

chart. One for displaying the registered data sources in a table
and one to display the console output. See Figure 6.

All plots/data are collected and displayed in one data viewer
window. This gives the possibility to compare data from dif-
ferent viewer windows and or filters. However, this has to be
considered when a filter is registering a data source, because it
is possible that the same filter is already running in a different
viewer and therefore a name conflict would occur if both use
the same name to register the data source. Hence, it is rec-
ommend including the viewer name in the data source name
when registering.

User Interface

Graph Tab
The graph tab allows plotting the registered data sources. On
the left side all registered data sources are displayed as check-
boxes. By selecting or deselecting a checkbox one can display
or hide a given data source. The textbox at the end of the axis
allows specifying the range on this axe. By selecting autoscale,
this is done automatically and chosen so that all plots fit to the
window.

Data Tab
The data tab is used to display data source in a table. This tab
also allows to store this table to a coma separated file. This is
especially useful if you want to import it later into different
programs, for example to a spreadsheet program. The order
of columns is the same as the order of checkboxes in plot win-
dow. However, XY data plots exist from two columns next to
each other.

Log Tab
The log tab is used to print console output to a window. A user
can therefore view them inside JAER itself, without having to
switch to an operating system console. This is especially useful
when the program is started form a graphical shell directly like
Windows or X, where now text console is present.

Figure 6: Shows the User Interface of the Data Viewer Window. Left: the graph tab which used to plot functions; Middle: Data tab
which shows the data points from the plot; Right: Log Tab, shows the output of JAER

Learning Goalie Robot/Semester Thesis SS07 Lang Manuel

Implementation

General
The data viewer functionality is implemented in the class
JAERDataViewer. This class is composed from some sub-
classes; namely, GraphData, DataTable, GraphPanel and the
enums Datatype, Linestyle. We will discuss all classes in more
details I in following paragraphs.

JAERDataViewer
The class JAERDataViewer is inherited from JFrame, and there-
fore it is normal Java Dialog. This Dialog was designed using
the GUI designer from NetBeans. We added 3 tabs as de-
scribed above with the designer. This class implements all the
logic used to handle the user interface, in particular the han-
dling of mouse and keyboard events.

The main class JAERDataViewer uses GraphPanel to display the
plots. GraphPanel class can be uses like a normal JPanel be-
cause it is implemented on top of the JPanel class. When Peri-
odic Updated is selected by the user, a timer implemented in
JAERDataViewer invokes a repaint of the GraphPanel and the
data table every 0.5 seconds.

JAERDataViewer is responsible for registering new data
sources. That means it exports a set of functions that other
classes can use to register new plots.

The addDataSet functions are used to register new data
sources. The most general function takes 7 parameters:

String Name: the name and key for later usage of this Data-
source. This is used to label a plot in the user interface and has
to be used again to delete a plot with removeDataSet.

ArrayList<Double> x: the list of X coordinates.

ArrayList<Double> y: the list of Y coordinates. This object is
also used to synchronize access. y is locked whenever the data
viewer is accessing either the x or the y list.

double samplingRate: This parameter is used in YScrolling
mode to calculate the x axe labeling. It is ignored in XY or YS-
caling mode.

_DataType dataType: This parameter specifies the type of
plot.
In XY mode the x and y list are used to plot the data. The data
is interpreted as a set of (x,y) points. All points are connected
by a straight line if style is Line or PointLine. In YScaling mode
only the y list used. The first list entry is on the very left side of
the plot. The last entry is plotted on the very right side of the
graph panel. The remaining y values are distributed equally
between the left and right side. In YScrolling mode only the
last n y entries are printed. n is the width of the plot panel in
pixels. Therefore, this mode behaves like a real-time chart.

LineStyle style, Color color: These two arguments are speci-
fieng the type and color of the lines. Style is either Point, Line
or PointLine.

JAERDataViewer also exposes simpler addDataSet function
that can be used to simplify the usage. However, they all use
the function described above as a backend.

A registered data set can be removed by calling removeData-
Set and specifying the name that that was used when register-
ing.

GraphPanel
GraphPanel is implanting a JPanel and extending it with the
functionality to draw registered data sets. Therefore, the paint
method is overwritten and changed so that the registered ar-
ray lists are used to draw a chart.

This panel implements all functionality needed to draw the
chart. This includes drawing the grid, the plots them self and
the auto scale functionality. This panel can also inform observ-
ers when the axes are rescaled. This is used by JAERDataView-
er to change the content of the axe text boxes when such an
events happens.

Data Table
The data table is implemented with a normal JTable. However,
to change the behavior as needed a new AbstractTableModel
is implemented. This AbstractTableModel, called DataTable,
provides the functionality to build the table from the regis-
tered data sources. This means it implements functions like
getValueAt which returns the value in the table at specified
location. DataTable also exports the function storeToFile that
is used to save the table to a comma separated file.

Logging
The GUI of the logging tab is a normal JTextArea. The redirect-
ing functionality of the err and out stream is implemented in
the subclass StreamSupport which extends the java class Out-
putStream. This class implements a write function which then
copies every character to the JTextArea. StreamSupport ob-
jects are then replacing the normal system.out and system.err
objects this leads to a redirection of all console output to the
JTextArea.

Usage
The data viewer windows can be accessed by any other class
through the static member GlobalDataViewer of the JAER-
Viewer class. Therefore, an example usage to register a real-
time chart looks like:

JAERViewer.GlobalDataViewer.addDataSet("name",

actPos, interval, true);

This simple calling interface allows to extend many filters with
a plot feature very easily. Next to registering as described

Learning Goalie Robot/Semester Thesis SS07 Lang Manuel

above, an implementation simply has to fill one or two ArrayL-
ist with data. Surely, this should be done in a synchronized
manner (by locking the y list).

VI. Bibliography
1. Time-derivative adaptive silicon photoreceptor array. Mead,
Delbrück and Carve. 1991.

2. Lichtsteiner, P., Posch, C. and Delbrück, T. A 128×128
120dB 30mW Asynchronous Vision Sensor that Responds to
Relative Intensity Change. IEEE ISSCC Digest of Technical
Papers. 2006, pp. 508-509.

3. Lazzaro, John, et al. Silicon Auditory Processors as
Computer Peripherals. [book auth.] Stephen José Hanson and
Jack D. Cowan and C. Lee Giles. Advances in Neural
Information Processing Systems. s.l. : Morgan Kaufmann, San
Mateo, CA, 1993.

4. Lichtsteiner and Delbrück. jAER. SourceForge. [Online]
2007. http://jaer.wiki.sourceforge.net/.

5. Weisberg, S. Applied Linear Regression. New York : Wiley,
1980.

6. D’Souza, Aaron, Vijayakumar, Sethu and Schaal, Stefan.
Learning Inverse Kinematics. Proceedings of the 2001 IEEE/RSJ.
s.l. : International Conference on Intelligent Robots and
Systems, 2001.

7. Matsushima, Michiya, et al. A Learning Approach to Robotic
Table Tennis. TRANSACTIONS ON ROBOTICS, VOL. 21, NO. 4,
AUGUST 2005. s.l. : IEEE, 2005.

8. Delbrück, T. and Lichtsteiner, P. Fast sensory motor control
based on event-based hybrid neuromorphic-procedural
system. ISCAS 2007.

VII. Figures
Figure 1Picture of our goalie Setup 1
Figure 2 Schematic of the setup. USB connects a PC, Silicon

Retina and servo motor 2
Figure 3 Shows the result of the learning. Each Point was

sampled during learning. The line shows the linear
relation between observed position and motor input
value. 3

Figure 4 The overshoot behavior of the arm. Note the
intermediate steps in the desired positions, which are
resulting from the overshoot protection. 5

Figure 5 View from the silicon retina. Blue boxes show tracking
area for arm (lower box) and balls (upper box). Tracked

objects are annotaeted. The disired (white) and actual
(blue) position of the arm is shown in the middle. 5

Figure 6: Shows the User Interface of the Data Viewer
Window. Left: the graph tab which used to plot functions;
Middle: Data tab which shows the data points from the
plot; Right: Log Tab, shows the output of JAER 6

file:///D:\Data\malang\INI\doc\semesterthesis.docx%23_Toc179364239
file:///D:\Data\malang\INI\doc\semesterthesis.docx%23_Toc179364239
file:///D:\Data\malang\INI\doc\semesterthesis.docx%23_Toc179364239
file:///D:\Data\malang\INI\doc\semesterthesis.docx%23_Toc179364239

	Introduction
	Setup
	ServoArm Class
	Introduction
	Class design
	Public Functions
	Super Class and Interfaces

	Implementation Overview
	Learning
	Motor value and Pixel value relationship
	Sampling and Linear Regression
	Implementation Details
	Learning Parameters

	Tracking
	Overshoot Protection
	Introduction
	Implementation

	Future work

	Goalie Class
	Introduction
	Implementation

	Data Viewer Window
	Introduction
	User Interface
	Graph Tab
	/Data Tab
	Log Tab

	Implementation
	General
	JAERDataViewer
	GraphPanel
	Data Table
	Logging

	Usage

	Bibliography
	Figures

