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Neuromorphic sensory systems
Shih-Chii Liu and Tobi Delbruck
Biology provides examples of efficient machines which greatly

outperform conventional technology. Designers in

neuromorphic engineering aim to construct electronic systems

with the same efficient style of computation. This task requires

a melding of novel engineering principles with knowledge

gleaned from neuroscience. We discuss recent progress in

realizing neuromorphic sensory systems which mimic the

biological retina and cochlea, and subsequent sensor

processing. The main trends are the increasing number of

sensors and sensory systems that communicate through

asynchronous digital signals analogous to neural spikes; the

improved performance and usability of these sensors; and

novel sensory processing methods which capitalize on the

timing of spikes from these sensors. Experiments using these

sensors can impact how we think the brain processes sensory

information.

Address

Institute of Neuroinformatics, University of Zurich and ETH Zurich,

Winterthurerstrasse 190, CH-8057, Zurich, Switzerland

Corresponding author: Liu, Shih-Chii (shih@ini.phys.ethz.ch) and

Delbruck, Tobi (tobi@ini.phys.ethz.ch)

Current Opinion in Neurobiology 2010, 20:1–8

This review comes from a themed issue on

Sensory systems

Edited by Kevan Martin and Kristin Scott

0959-4388/$ – see front matter

# 2010 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.conb.2010.03.007

Introduction
Nature offers many examples of compact, energy-

efficient, adaptable, and intelligent systems. Even a

simple animal like the bee displays exquisite flight motor

skills and cognitive behaviors, with a body weight of less

than a gram and a brain that dissipates only on the order of

10 mW. Yet we are not able to construct an artificial

system that displays even a subset of this creature’s

abilities using the latest technology; see for example,

the performance of the state-of-art robotic vehicles in

the recent DARPA Desert and Urban Challenges which

relied heavily on absolute positioning via GPS and carried

roughly 1 kW of computing power [1�].

To identify the factors contributing to nature’s compu-

tational efficiency in dealing with its uncontrolled
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environment, many researchers rely on simulations of

brain networks using supercomputers [2�] which are

constructed from fast, high-precision digital hardware

with high power dissipation. However, brains are com-

posed of slow asynchronous neural components which use

a combination of both analog and digital signal repres-

entations. Although computers are valuable for detailed

simulation of biophysics, they are not physical emulations

of biological neural computation.

A small number of labs in the field of neuromorphic
engineering are actively pursuing a different approach

towards understanding the architecture of brains. By

emulating the neuronal organization and function of

nervous systems in electronic devices, neuromorphic

engineers hope to harness the brain’s efficient and power-

ful style of physical computation for future artificial

systems [3–5]. The fruits of this effort are illustrated in

neuromorphic microchips that emulate biological sensing

and spike-based neuronal processing.

Neuromorphic sensors and sensory systems have made

the greatest strides in recent years with many designs

using a new form of asynchronous output representation

which carries timing information similar to spikes in the

nervous systems. This representation has led to novel

systems where computing occurs in an event-driven

manner similar to that of nervous systems [6].

Artificial technology: similarities between biology and

silicon

Neuromorphic electronic devices are constructed prim-

arily on silicon, the same technology used for fabricating

the majority of analog and digital computing chips. The

primary silicon primitive is the transistor where current

flows through this device as a function of the voltage at its

four terminals. It shares much of the same physics of

neurons thus making it an ideal device for emulating the

circuitry of nervous systems [4,7]. In the ‘‘subthreshold’’

region of operation, the transistor current is exponentially

dependent on its terminal voltages analogous to the

exponential dependence of active populations of vol-

tage-sensitive ionic channels as a function of the potential

across the membrane of a neuron. This similarity allows

us to construct using a small number of transistors,

compact circuits that implement electronic models of

voltage-controlled conductance-based neurons and con-

ductance-based synapses [8,9] and useful computational

biological primitives such as phototransduction, logarith-

mic functions, amplification, multiplication, inhibition,

correlation, thresholding, and winner-take-all selection

[7].
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Communicating spikes by using the address-event

representation

Building large arrays of interconnected neurons on a

silicon chip can pose a challenge. Unlike the 3D world

of neurons, transistors are permanently patterned on a 2D

substrate with only a few layers of wiring. Point-to-point

dedicated wiring is expensive and is restricted to local

neighborhoods. Wiring and transistor circuits on a chip are

also fixed after chip fabrication, restricting the range of

possible neuronal architectures that can be expressed on

one chip. However, the mobility of current flow (elec-

trons) in a transistor is 107 times higher than the mobility

of ions in biology. This huge difference in speed is used to

make up for the fixed circuitry, as we will now discuss.

We use the higher speed of electronics to our advantage

by devising a different signal transmission scheme than

that of real neurons. Connections in real neurons are built

by synapses which connect an axon to a dendrite. In

electronics, we simply confer an address to every neuron

and synapse on-chip. We transmit spikes off-chip as a

spike address that carries the ‘‘what’’ (which neuron) and

‘‘when’’ (when it spiked) information. These addresses

are transmitted within a few nanoseconds to another

external device. For example, one 16-bit address bus

can carry spikes from up to 216 = 65,536 neurons. Since

the on-chip neurons are designed to have low firing rates

of about 100 Hz or less, multiple spike addresses can be

transmitted off-chip on the shared address bus before a

neuron makes the next spike. The availability of ‘‘what’’

and ‘‘when’’ information allows great flexibility for sub-

sequent processing. For example, digital memory chips

can store a routing table which describes how a spike

address is routed to other neurons through their pre-

specified spike addresses, thus emulating a soft config-

urable connectivity scheme for multiple neuron on-chip.

This scheme is called the address-event representation
(AER) and is the de facto signal transmission scheme

used in most recent neuromorphic sensors and multi-chip

systems [10�].

Event-driven computing with spike-timing
What are the advantages of using AER? Conventional

sensors and AER systems differ in who is the master of

the communication. In conventional sensors, an external

process regularly polls the sensor array at sufficiently high

rate to capture all frequencies of interest. AER sensors,

like their biological counterparts, make the sensor the

master: Each retina pixel or cochlea channel autonom-

ously decides when it should transmit events that carry

useful information about the world. This form of event

coding has two advantages: first, these sensors transmit

only informative non-redundant events, thus reducing

power dissipation both for communication and for sub-

sequent processing. Second, because the pixels initiate

their own communication, output events are transmitted

with very short latencies. These spikes initiate compu-
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tation in the post-processing network, which we call event-
driven computation. A recipient network can, for example,

use the timing information of the events to configure the

connections between neurons [3,11�], to initiate synaptic

plasticity in a network [12,13]; or to drive the motor

output of a visual-motor system with low-latency

[14��,15].

Emulation of biological sensing
Neuromorphic engineers have focused significant effort

on mimicking the retina and cochlea. The primary

reasons for this focus are that these sensors have immedi-

ate applications in artificial vision and audition, and they

allow the exploration of neural-like architectures for

sensory processing in the brain.

Silicon retinas

Conventional imagers like our digital cameras create

sequences of highly redundant pictures. However, retinas

serve a different function; they asynchronously transmit

relevant information about the world, thus reducing

redundancy and increasing efficiency in power dissipation

and information transfer [16]. Neuromorphic designers

have made significant strides in copying the functionality

of the retina based on the wealth of knowledge from

neuroscientists [17]. The earliest silicon retina by Maho-

wald and Mead [18] illustrated the functionality of major

retinal cells and demonstrated useful properties of bio-

logical retinas, for example, the local gain control of

photoreceptors over many decades of background inten-

sity, and the reduction of redundant spatial and temporal

information. The majority of recent silicon retina designs

transmit their outputs as AER spikes. Improvement in the

silicon analog circuit design techniques has led to recent

useable designs with varieties of cell types and function-

ality [19,20�,21–25,26�] (see Figure 1).

Unlike conventional imagers that generate frame-

sampled intensity values, silicon retinas emulate the local

processing, local gain control, and asynchronous spike

transmission properties of biological retinas. From an

engineering perspective, silicon retinas offer advantages

of increased dynamic range in illumination (>105) and

higher effective sampling rates (several kHz) over con-

ventional cameras, which have typical dynamic range of a

factor of 300 in illumination and sampling rates of under

60 Hz. The cost of processing the sparse output of silicon

retinas can be reduced by a factor of 100 compared to the

cost of processing the outputs of conventional cameras

[26�].

Silicon cochleas

Silicon cochleas model the functionality of the biological

counterpart, in particular the traveling wave responses of

the basilar membrane (BM) as a result of incoming sound

waves. The transport of energy along the BM is modeled

by an electronic filter bank consisting of multiple filters
Opin Neurobiol (2010), doi:10.1016/j.conb.2010.03.007
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Figure 1

Example of silicon retina system [24]. (a) The sensor emulates a part of the retina pathway that is not well served by conventional image sensors. We

made the analogy between the sustained pathway of the biological retina and conventional cameras, as opposed to the transient pathway of the

biological retina, which we model with the so-called Dynamic Vision Sensor (DVS). (b) The DVS pixel models a simplified 3-layer retina, where

individual pixels are decoupled spatially but still use a temporal ‘‘surround’’ computed by each pixel independently. (c) The DVS pixel forms an

abstraction of the photoreceptor-bipolar-ganglion cell information flow. It consists of three parts: a logarithmic photoreceptor, a differencing amplifier

(bipolar cells), and two decision units (ganglion cells). The pixel output consists of asynchronous ON and OFF address-events that signal scene

reflectance changes. (d) The spike events are computed by the pixel as illustrated. The continuous-time photoreceptor output, which encodes

intensity logarithmically, is constantly monitored for changes since the last event was emitted by the pixel. A detected change in log intensity which

exceeds a threshold value results in the emission of an ON or OFF event. The threshold is typically set to about 10% contrast. Communication of the

event to the periphery resets the pixel, which causes the pixel to memorize the new log intensity value. (e) The pixels are arranged in an array and

fabricated in a standard chip-making process. AER circuits along the periphery of the chip handle the access to the shared AER bus and ensure that all

events are transmitted, even if there are collisions. Colliding pixels must wait for their turn for access to the AER bus. (f) The chips are integrated into a

camera, interfaced either to a computer by USB, directly to a microcontroller, or to another neuromorphic chip via its AER interface. (g) Data collected

from the DVS shows its characteristics: the events can be histogrammed in 2D-space over a certain time window to form an image which displays

either the ON and OFF events as contrast (Faces), or as a gray scale showing the relative event time (Juggling event time), or they can be viewed in

space-time to see the spatiotemporal structure (space-time spike events).
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Figure 2

Example of silicon cochlea system [36]. (a) Simplified view of unrolled cochlea. (b) Responses of basilar membrane to different frequencies (adapted

from von Békésy [59]). Depending on the frequency of an input tone, the frequency component of the pressure wave generated in the fluid leads to a

maximum displacement at some place along the BM. The place depends on its characteristic frequency (CF). The CF has an exponentially decreasing

value from the base to the apex of the BM. (c) Cascaded bank of second-order filter sections represents basilar membrane model, along with circuit

blocks to model the half-wave rectification of the inner hair cells and multiple spiral ganglion cells with different thresholds (VT1–VT4). Digital to analog

converters (Q DACs) in each channel allow adjustment of resonance properties. (d) Chip microphotograph of AER EAR2, a 64-stage binaural system

where each ear is implemented as in (c). (e) User-friendly printed circuit board to hold the chip along with digital chips for USB interface to a laptop,

microphones, and preamplifiers. (f) Spike raster response to speech ‘‘The quick red fox jumped over the lazy dog’’. The colors correspond to channels

of the two ears.
which are arranged to model the physical properties of the

BM. Initial prototypes used a 1D cascaded filter bank to

model the response of the BM [27] (Figure 2b). Sub-

sequent designs use filter banks with a cascaded or

parallel architecture; or include circuits modeling the role

of the fluid coupling between cochlea stages [28,29,30�];
and the local gain control in the biological cochlea

[30�,31–33]. The latest designs also include circuits after

the BM that emulate the hair cells and spiral ganglion

cells [30�,34–36] and transmit asynchronous AER spikes

like the silicon retina (see Figure 2). The timing infor-

mation from the AER cochleas can be used for inferring

the location of an acoustic source, for example, from the

interaural time differences between sounds arriving to the
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two ears [37] or by emulating the echolocalization mech-

anism of bats [38]. The spike outputs can also be used to

extract higher level auditory features suitable for tasks

such as speaker identification [39]. The commonality of

output representation in the retina and cochlea should

open up a fruitful area in sensory fusion which exploits

timing information for a coherent bimodal representation.

Neuromorphic sensory systems
In neuromorphic multi-chip sensory systems, AER sensor

spikes travel in real-time to multi-neuron processors

implementing neuron and synaptic circuit models of

varying details [40,41,42�,43�]. Through the AER infra-

structure, configuration of the network connectivity
Opin Neurobiol (2010), doi:10.1016/j.conb.2010.03.007
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Figure 3

Using events in AER systems. (a) The CAVIAR system [49��] used four different types of AER processing chips to continuously fixate a moving circular

object of a certain size on a cluttered background. It had a total of 45,000 spiking neurons and could compute up to 12G synaptic connections per

second. The output of the retina chip drove spike-based convolution chips which computed the responses of the circular receptive fields illustrated. An

‘‘object’’ winner-take-all chip then selected the peak of this filtered output. The location of this peak activity was used to continuously fixate the circular

object that the system was configured to track. The delay line and learning chip components were used to learn common classes of trajectories. (b)

The robotic goalie [15] also tracked circular objects (in this case balls shot at the goal), but in software rather than hardware. Multiple balls were

simultaneously tracked and the one predicted by its position and velocity to first cross the goal line was blocked by moving the arm. To learn how to

map motor commands to visual space, the goalie also tracked its own hand (unpublished result). Several behavioral states (blocking, actively waiting,

and sleeping) were chosen based on a simple state machine with transitions that depended on past state and sensory input. The right panel shows a

snapshot of 128 spike events from 2.4 ms of retina activity during the tracking of several balls and the goalie hand. Each retina event updates the

putative location of a moving object (rectangles); events seed potential object locations (thin rectangles), and objects are discarded when they are no

longer supported by events.
on-chip and across chips allows the expression of various

network and system architectures. Multi-neuron chip

systems are increasing in scale [42�,44] with as many as

65,000 neurons on a single chip (unpublished working

system). Multi-chip sensory systems can demonstrate

cortical visual properties such as orientation selectivity

[45–47], stereopsis [48], and motion sensing with tracking

[49��]. Cortical-like multi-layered AER systems which

can implement neuroscience models of visual processing

are also being realized [47,49��] along with sensory-motor

AER systems [14��,49��] (see Figure 3 for two examples).
Please cite this article in press as: Liu S-C, Delbruck T. Neuromorphic sensory systems, Curr
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Challenges to application
Like every area in electronics, neuromorphic chip

designers ultimately face the challenge of validating their

approach by implementing commercially viable silicon

designs. Transistor current variability is one of the main

challenges because it severely limits precision, especially

across an array of nominally identical circuits [50]. Silicon

circuits cannot easily imitate the complex, rich molecular

machinery of cells which enable the latter to continuously

adapt their operating parameters to changes in their

environment. Synchronous digital logic circuits are par-
Opin Neurobiol (2010), doi:10.1016/j.conb.2010.03.007
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tially so successful because they deal with this transistor

variability by simply restoring every logic circuit output to

one of two possible voltage values. However, clever

circuit and system design can be used to mimic biology’s

adaptation schemes and to reduce unwanted response

variances across pixels in the chips. This understanding

has led to recent neuromorphic sensors with performance

that can exceed conventional technology, especially in

applications like low power, high speed, or wide dynamic

range vision [20–25,26�], and neural prosthetics [51�,52�].
A small number of studies have exploited transistor

variability for computation. For example, an orien-

tation-selective network refines its local orientation pre-

ference starting from the intrinsic preference embodied

by the built-in variability of transistors [53] and a network

of spiking neurons refines its synchronicity using relative

spike-timing [12].

Future neuromorphic computation
For much of its history, neuromorphic engineers have

aimed to build ‘‘pure’’ neuromorphic AER systems con-

sisting of multiple interconnected, mostly feed-forward

neuromorphic chips. These hardware systems have

proved to be more difficult to configure than software,

in large part because of the general lack of understanding

of how we can compose real-time behaving systems out of

independent modules. Although we understand some-

thing about building hierarchical networks for feature

extraction and classification (e.g. [54,55]), little is known

about building systems that express a suite of behaviors

using these generic modules.

However, we have started to make some inroads into

event-driven sensory and sensory-motor algorithms by

combining AER sensors with conventional computers.

An open-source software project (jaer.wiki.sourcefor-

ge.net) provides the possibility of processing AER sensor

events using software algorithms. The software infra-

structure is optimized for using the event timing. For

example, local features like orientation and motion can be

extracted using temporal coherence and relative timing of

events [56]. The main practical application area so far has

been fast object tracking using the temporal clustering of

events [57] (see Figure 3b for an example). These devel-

opments show advantages gained from the reduction in

latency and processor load with event-driven sensor

representations [14,15,57].

Just as large microprocessor companies support open-

source computer vision and machine learning software

projects to understand the required features of future

generations of processors, software processing of AER

data will suggest neuromorphic hardware that needs to be

developed. Future advances in neuromorphic sensory

systems will also depend on ongoing work of how we

can systematically combine modules to produce a desired

function [58], on understanding probabilistic inference
Please cite this article in press as: Liu S-C, Delbruck T. Neuromorphic sensory systems, Curr
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methods in nervous systems, and on the evolution of

algorithms into hardware.
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