Intro to Neuroscence: Neuromorphic Engineering

Introductory Course in Neuroscience

Neuromorphic Engineering

Shih-Chii Liu

Inst. of Neuroinformatics http://www.ini.uzh.ch/~shih/wiki/doku.php?id=introneuro What is neuromorphic engineering? It consists of embodying *organizing principles* of neural computation in electronics

(c) S. Liu and T. Delbruck, Inst. of Neuroinformatics, UZH-ETH Zurich

Comput	er vs. Brain
Computer	Brain
Fast global clock	Self-timed, data driven
Bit-perfect deterministic logical state	Synapses are stochastic! Computation dances digital→analog→digital
Memory distant to computation	Synaptic memory at computation
Fast, high resolution, constant sample rate analog-to-digital converters	Low resolution adaptive data- driven quantizers (spiking neurons)
Differences are currently electrons in silicon is about	possible because mobility of 10 ⁷ times that of ions in solution

Part 1: Motivation & history Part 2: Modeling the neuron in silicon Part 3: Modeling vision in the dynamic vision sensor (DVS) silicon retina Part 4: Modeling audition in the AEREAR2 silicon cochlea

(c) S. Liu and T. Delbruck, Inst. of Neuroinformatics, UZH-ETH Zurich

A logarithmic (or self-normalizing) representation of intensity is useful for representing object reflectance differences, rather than the illumination conditions.

- Two objects of different reflectance produce a ratio of luminance values.
- The difference of two log values represents this ratio, independent of the illumination.

Intro to Neuroscence: Neuromorphic Engineering

	<u>Resources</u>
ва •	Ackground readingl: C. Mead (1990) <u>Neuromorphic Electronic Systems</u> , Proceedings of the IEEE, vol 78, No 10, pp 1629-1636 - Carver Mead's summary paper on the rationale and state of the art in 1990 for neuromorphic electronics. S.C. Liu, T. Delbruck (2010) <u>Neuromorphic Sensory Systems</u> , Curr. Opinions in Neurobiology - Our recent review paper on neuromorphic sensors.
De	emonstrations
•	T. Delbruck, S.C. Liu., <u>A silicon visual system as a model animal</u> , (2004). Vision Research, vol. 44, issue 17, pp. 2083-2089 - About the electronic model of the early visual system demonstrated in the some class lectures (not in 2011).
•	<u>Dynamic Vision Sensor</u> - Describes the dynamic vision sensor silicon retina demonstrated in the lecture.
•	Liu et al 2010 - Event-based 64-channel binaural silicon cochlea with Q enhancement mechanisms
Ye	t more historical material and background:
•	Original silicon retina paper from Scientific American, M. Mahowald and C. Mead. 1991 K. Boahen (2005) <u>Neuromorphic Microchips</u> , Scientific American, May 2005, pp. 56-63 - Kwabena Boahen's paper on the state of the art (in his lab) in 2005 in neuromorphic multi-chip systems.
•	The Physiologist's Friend Chip - The electronic model of the early visual system.
0.0	

Summary

- 1. Neuromorphic Engineering: Motivation
- 2. Modeling the neuron in silicon
- Modeling vision in the dynamic vision sensor (DVS) silicon retina
- 4. Modeling audition in the AEREAR2 silicon cochlea