
BLENDER CONFERENCE 2007

Blender’s Game Engine as a 3D Environment Simulator
for External Programs
Albert Cardona ab ∗

a Molecular Cell Developmental Biology, University of California Los Angeles, 621 Charles E. Young
Dr. South, 90015 CA.
b Institute of Neuroinformatics, University of Zurich / ETHZ. Winterthurerstrasse 190, CH-8057
Zurich, Switzerland.

1 INTRODUCTION
The Monster Truck (nickname for a customized Traxxas E-MAXX)
is a remote-controlled miniature 4-wheel drive car, equipped with
suspension, strong grip wheels and shocks, and a USB input port for
its steering and throttle systems. Toby Delbruck built onto the truck
the necessary components to enable autonomous driving following
visual cues. Namely:

• a neuromorphic silicon retina over the front end of the car,
inside a protective hard-wood box containing a mirror to point
it towards forward. Each light sensor in the retina’s grid fires
asynchronously and an event occurs on trespassing a certain
threshold of contrast difference with the previous state.

• the jAER software package, which is a Java program for cap-
turing, sequencing, viewing and especially processing address-
event representation data, a protocol used for communication
among silicon neurons. The software processes information
packets (events) asynchronously, emulating the way in which
neurons transmit and process information.

• a driver extension for the jAER, which processes visual input
and extracts visual cues such as lines, computes the desired
steering direction and speed, and feeds them back to the truck.

• a small Sony Vaio running the jAER.

For the fun of it, and because we could, we build a truck simulator
in Blender. First we made a 3D mesh representing the truck, and
then setup the game logic and a set of accessory python scripts to
provide input to the jAER via network sockets.

The 3D simulator provides a totally editable arena for testing the
trucks software. In particular, we are interested in evaluating the
performance of the line extractor and the truck driver systems in the
presence of heavily textured backgrounds.

The target is to make the truck drive autonomously following a
painted line on the ground.

2 THE SIMULATOR COMPONENTS
There are four main elements in the simulator:

• The game arena: provides a solid ground (an actor with dyna-
mic disabled) to run the car and to place textures and obstacle
objects and ramps.

∗to whom correspondence should be addressed: cardona@ucla.edu

Fig. 1. A simple truck, with chassis and attached camera, and the arrow
object at bottom right.

• The truck: the visible actor, composed of a tilting chassis over
four wheels, the front two able to steer.

• The arrow object: parenting the truck, the arrow actor exists
for simplification purposes and in this simple simulator embo-
dies the actual main actor. Remote controlled, navigates the
game arena.

• Camera parented to the tilting chassis: source of visual sensory
input to the external program.

3 GAME LOGIC
Each actor needs a set of sensors, controllers and actuators to inter-
act with the game arena. Both input and output from Blender to the
external program (the jAER, in this case) and back need be taken
care of.

An always sensor assigned to the active game camera (paren-
ted to the truck) interacts with a python script actuator (see Table
1), responsible for capturing image frames. For convenience, the
camera is also assigned the Escape key actuator to quit the game.

The arrow object is in control of the car, and receives input both
from within Blender -for testing purposes- and from the external
program (Table 2). For direct game interaction within Blender, key
actuators are used, which link to simple AND controllers and then
each to a different force actuator, which simulates acceleration.

Enabling control of the arrow object from the external program
was a bit tricky. There are two parts involved: the property changed

c© Albert Cardona 2007. 1

Cardona, Albert

Table 1. The logic blocks of the camera object.

name sensor controller actuator

camera Always, 1/4 tics camera feeder.py
quit key ESC camera quit.py Game, quit

Table 2. The logic blocks of the arrow object, controlling the car.

name sensor controller actuator

uparrow key AND Motion Force +30 Y
downarrow key AND Motion Force -30 Y
rightarrow key AND Motion AngV -0.8 Z
leftarrow key AND Motion AngV +0.8 Z
turn right Prop. changed AND Motion AngV -0.4 Z
turn left Prop. changed AND Motion AngV +0.4 Z
throttle Prop. changed AND Motion Force +10 Y

sensors (Table 2) and the modification of such properties via the
camera python script controller (camera feeder.py, Table 1). In this
way, at every game logic time tick, the properties of the arrow object
are changed following the commands provided by the external pro-
gram, and their change fires the controller and thus the desired force
actuators, resulting in truck motion within the game arena.

4 CAPTURING THE GAME’S ACTIVE CAMERA
FRAME IN A PIXELS ARRAY

The camera is parented to the truck and provides the driver’s view-
point. The game screen will be exactly the camera view. From a
python script set as a controller, such view can be captured for image
processing purposes. In the case of the truck, each pixel must be
compared with the same pixel at the previous game logic tick, and a
value computed to determine if a pixel changed event must be fired
or not.

To capture what the camera sees, we need first the bounding box
of the game screen. Since such box will not change during the course
of the game, its bounds are stored in a global variable ’Rasteri-
zer.AB bbox’. Using global variables assigned to python modules
is the only way to keep game state throughout game execution,
since every time a controller calls a python script, the latter is newly
initialized.

try:
b = Rasterizer.AB_bbox

except:
allocate 4 integers to capture the box
(x,y,width,height) of the GL_FRONT
b = Buffer(GL_INT, 4)
capture the GL_FRONT bounding box
glGetIntegerv(GL_VIEWPORT, b)
Rasterizer.AB_bbox = b

To capture the camera frame, we allocate a new buffer with the
proper dimensions and then pass it to OpenGL’s glReadPixels func-
tion. In this case, in black and white (GL LUMINANCE flag).

select the front buffer (the game window)
glReadBuffer(GL_FRONT)
allocate a buffer for the image
pix = Buffer(GL_BYTE, b[2] * b[3])
fill the pix array taken from the box
glReadPixels(b[0], b[1], b[2], b[3],

GL_LUMINANCE, GL_BYTE, pix)

For performance purposes, the image contained in the pixel buf-
fer is scaled to a maximum of 128x128 pixels using a C function
scaleImage, wrapped in the custom python module EventGenerator
and accessed from within python.

5 GENERATING SYNTHETIC EVENTS
In the simulation, the camera generates a full frame at every time
tick, which differs greatly from the asynchronous generation of con-
trast changed events by each of the silicon retina’s arrayed light
sensors. The best possible aproximation is to generate a set of events
for each frame, all equally time-stamped. The asynchronous nature
of the jAER will handle them just the same.

The module EventGenerator contains the createEvents function,
which takes the new pixel buffer and the previous matrix of events,
and generates the new matrix of events. Doing so in C is very
convenient not only for live game performance, but also for crea-
ting and packing the events themselves. Each event requires some
computation and byte shifting operations which are way more
straightforward in the C language than in python.

Finally, the returned matrix of events is stored in a python module
variable, just like the bounding box of the game screen, for pixel
comparisons with the next video frame.

6 INTERACTING WITH THE EXTERNAL
PROGRAM VIA NETWORK SOCKETS

For ease of use, communication with the external program is hand-
led by a network socket. In this fashion, not only can Blender
interact with programs written in languages other than C and python,
but also they may run in different computers.

The python server is created by the camera python script control-
ler, and stored into a module variable.

To send information packets through the socket, special attention
is required to the format. The struct package provides the means to
clearly specify the endianness and data types sent.

send events to the client jAER
now = int((time.time() - start_time) * 1e6)
above, in microseconds
packet = ""
create one compound packet with all events
for e in events:

pack into a char string of 2 bytes
(a short) and 4 bytes (a long)
as standard, no byte padding
packet += struct.pack(’!HL’, e, now)

7 CONCLUSION
Blender’s game engine comes as a great platform for physics simu-
lation, and offers all the power and ease of use of python and C to
make the best out of it. As demonstrated, interacting with external,

2

3D Simulator

dedicated software works like a charm once all game logic bricks
fall into place.

8 ACKNOWLEDGMENTS
Thanks to Toby Delbruck for his patience in explaining the details of
the Monster Truck and the jAER during the Neuromorphic Enginee-
ring meeting in Telluride, Colorado, 2007. Deep thanks to Daniel
Fasnacht for detailed explanations and heavy debugging of the
python network server, and to Yulia Sandamirskaya for working out
the driver logic (those differential equations!) in the jAER.

9 APPENDIX: TIPS AND TRICKS
The radius of the parent objects rules above those of any of the child-
ren. In our case, the radius of the arrow object, which is parent to
the entire truck, must be large enough and positioned just so, for the
arrow not to fall by gravity and thus sinking the truck way into the
arena when the game starts.

The ground or action arena must be set as an actor, but with no
dynamic flag: it will be immobile, static. Otherwise it would fall
infinitely, and everything else with it. For the expected result, the
bounds of the arena must be set to those of its triangle mesh.

Since python scripts are executed newly every time a game logic
tic calls the controller, game state can only be stored either in files
(undesirable) and as newly created variables on game logic module.
To ensure the same variable is used, the script captures the variable
in a try and except statement; if the variable is not present, the raised
exception is cached and the variable (the server, the bounding box,
the event matrix) is initialized.

To avoid potential name conflicts with variables stored on modu-
les, it is advisable to prepend an unusual tag to all variables, creating
a de facto name space (note the prefix AB to all variables I assign
to game engine modules).

Objects from a Blender scene get prepended an OB tag to their
object names when accessed by python scripts from within the game
engine. For example, the arrow object becomes the OBarrow object.

Within the Game engine, objects show the color and shadings
of their materials but not any of their textures. For objects to dis-
play their texture, the latter must be of type image and properly UV
mapped to it.

10 RESOURCES
• jAER: Address Event-based Representation protocol imple-

mented in Java. http://jaer.wiki.sourceforge.net

• Source blender file and C/python source code files available at
https://jaer.svn.sourceforge.net/svnroot/jaer/trunk/blender/

• Monster Truck at the Neuromorphic Engineering Workshop,
Telluride 2007.
https://www.neuromorphs.net/ws2007/wiki/monster

Fig. 2. Blender game engine running on the top left window, and the jAER
event viewer and driver control panel on the right.

3

