ETH Course 402-0248-00L: Electronics
for Physicists Il (Digital)

* Taught by: Tobi Delbruck, Alejandro Linares
* Department: ETH Zurich Department of Physics (D-PHYS)

Day/Time: Weekly on Fridays from 1315 - 1700 in Picaardsaal, ETH
Hoenggerberg Campus, HPT Room C103

Breaks: No class in some weeks, check schedule on wiki.
Language: English.

Credits: 4 credit points.

Exam: There is no exam but students must successfully complete
the class exercises. Attendance sheet will be used.

+ Class wiki: google “dig delbruck”

www.ini.uzh.ch/~tobi/wiki/doku.php?id=dig:start

Prerequisites

* Companion course:
Electronics for Physicists | (Analog), Fall semester,
taught by Roland Horisberger.

* The digital course complements the analog
course by teaching how to build systems that
convert and process analog information.

* You should have had some programming
experience, preferably with C. Students (or at
least each group of 2-3 students) need a laptop
computer, Windows or Linux (but only Windows
supported by Tobi). Mac OS can use VM.

20/02/14

15‘. half: Embedded systems with
microcontrollers 2" half: Logic design with FPGA

L] 08 L
Jc =

PCB SMD assembly PCB design and layout

Embedded system design example
Ada’s luminous tactile floor

20/02/14

20/02/14

Ada’s luminous tactile floor

Neon Tile

220VAC Power, |nterbus Force sensitive

Resistor (FSR)
eight sensor

3 Neon
RGB
Lamps

e S s S S
2

20/02/14

SYSOL/Y

e2
(e]
o
no
&3
iz

N

X 500 @25 CHF/board

20/02/14

20/02/14

Tile Microcontroller Program

Interrupt service routines (ISRs)

Zero crosﬂf‘;

Interbus data cycle

AN

1000 lines C/assembler code running on 8052 derivative

Two demo tiles have been running continuously for >5 years!

The ATmegal68P / 328P

AT = Atmel: Big microcontroller company
* mega: microcontroller family

16: 16KB Flash memory / 32: 32KB Flash
8: 8-bit architecture

P: PicoPower Technology. Optional. For low
power battery-based applications.

AVR families

tinyAVR — the ATtiny series
* 0.5-16 kB program memory
* 6-32-pin package
« Limited peripheral set
megaAVR — the ATmega series
* 4-512 kB program memory
* 28-100-pin package
» Extended instruction set (multiply instructions and instructions for handling larger program memories)
« Extensive peripheral set
XMEGA — the ATxmega series
* 16-384 kB program memory
* 44-64-100-pin package (A4, A3, A1)
» Extended performance features, such as DMA, "Event System", and cryptography support.
« Extensive peripheral set with ADCs
Application-specific AVR
» megaAVRs with special features not found on the other members of the AVR family, such as LCD controller, USB controller, advanced
PWM, CAN, etc.
FPSLIC (AVR with FPGA)
» FPGA 5K to 40K gates
» SRAM for the AVR program code, unlike all other AVRs
« AVR core can run at up to 50 MHz [3!
32-bit AVRs
Main article: AVR32
In 2006 Atmel released microcontrollers based on the 32-bit AVR32 architecture. They include SIMD and DSP instructions, along with other
audio and video processing features. This 32-bit family of devices is intended to compete with the ARM based processors. The instruction set
is similar to other RISC cores, but it is not compatible with the original AVR or any of the various ARM cores.

ATmegal6/328P capabilities

* System Functions e One 16-bit Timer/
— Power and Clock Manager .
— Low Freq Internal Oscillator Counter (TC) Wlth Auto-
— Watchdog Timer Reload and PWM (X2)
— Real-Time Clock Timer e Two 8'b|t Timer /

* Interrupt Controller
— Fixed priority. One level of

Counter (TC) with AR and

interruption. Interruptions with flag PWM (XZ)
(can remember) or without. Global
Interrupt Enable (I-bit) is disabled ¢ One 8-channel 10-bit

during an interrupt service.

Analog-To-Digital
* NO Universal Serial Bus (USB) alog-To-Digita

— This micro hasn’t USB. The nano Converter (ADC), 769kS/S
board provide an USB-UART interface

from FTDI company. * SPl, USARTI TWI(IZC)

20/02/14

Clocks

Figure 28-1. Maximum Frequency vs. V¢

20 MHz

10 MHz

4 MHz

/

N

Safe Operating Area

4.5V

v

Arduino ATmega328P uses a 16MHz Resonator with 5v Vcc, to keep compatibility to ATmega8

ATmega328 simplified block diagram

Watchdog Clocks Debug & ISP
Timer ext 16MHz (need special
int 128KHz programmer)
Memories: AVR CPU Peripherals:
1/0 Ports
Program Flash -
Timer/Counters
A USART
Data SRAM sp|
Confi ti
(2KB) onfiguration TWI (120)
EEPROM (1KB) Fuses o
(Bootloader)

20/02/14

20/02/14

e T _"_T_______________l

H Waichdog Power debugWIRE]
Timer

] Supervisior

: o reser | | [

i Oscillator RESET LOGIC

]

1

1

i

Oscillator
Circuits / l Flash l I SRAM]
H Clock T 1T
1 General tion
1
i AVR cru
i w
| .[!
! "
]
H —r — VT
! T 3 II 4 ' AREF
! Y
! 1 I I — o
' v 7 [S
' I 861 TIC 0] I 165 T/C 1 I AID Con. Ie—i- !
' 3 L) P |
+ T

H 2 _[BRTIC2 I l Anaiog }“_I Tnternal 6 |
| 2 - Comp. Bandgap :
! &
vl E
: — :
! i
: I USART 0 I l SPI I | ™I I :
: | LL |
1 |
] — !
1 1) |

|
: v 3 (R |
| l PORTD (8) I l PORT B (8) I | PORT C (7) I |

|

|

- ESET
_______________________________________)

ALL2)
PO{0. 'B{C..7] PCi0.6) \DC[8.

Atmegal68/328P datasheet

440 pages

Useful for architecture comprehension

Peripheral descriptions

Not all details are necessary since Arduino
bootloader make things easier!!

Arduino Sketch

® O O Blink | Arduino 1.0.5

Blink §

Blink

Turns on an LED on for one second, then off for one second, repeatedly.

This example code is in the public domain.
X/

// Pin 13 has an LED connected on most Arduino boards.
/¢ aive it a nane:
int led = 13;

e setup routine runs once when you press reset:
setup() {

// initialize the digital pin as an output.
pintodeled, OUTPUT);

{
cite(led, HIGH);
de Loy (108);
gitalWrite(led, LOW);
e Loy (5000); /¢ wait for

n {(HIGH is the voltage |
econd
ff by making the voltage LOW
d

Binary sketch size: 1,084 bytes (of a 30,720 byte maximum)
Binary sketch size: 1,084 bytes (of a 30,720 byte maximum)

Arduino Nano w/ ATmega328 on /dev/tty.usbserial-A9615VNN

C programming for Arduino

ANSI C STYLE ARDUINO CODE STYLE

void setup(void);

void setup() {
void loop(void);

}

void main(void) {

setup(); //perform one-time initializations void loop() {

while(1) { }
loop(); //repeat this over and over
}
! Any other necessary stuff is included by
) . Arduino IDE during compilation time and it
void setup(void) { .
) is transparent for the user / programmer (you)

void loop(void) {
}

20/02/14

10

* Managing a LED:
— Setup: pinMode(13, OUTPUT); // bitSet(DDRB,5);
— Loop: digitalWrite(13, HIGH); //or LOWz

* Managing Serial port:

— Setup: Serial.begin(rate); //Serial.end();

— Loop: Serial.printin(data);
Serial.printIn(data, data_type); /ec s Hexocr, svre
Serial.print(data, data_type);
n=Serial.available(); //n=number of bytes (max 128B)
b=Serial.read(); // Serial.write(b);
b=Serial.peek();
Serial.flush()

void serialEvent() {}

Standard AVR code

#include <stdio.h>
#include <avr/io.h>

#ifndef F_CPU
error Must define F_CPU or pass it as compiler argument
#endif

FILE uart_out = FDEV_SETUP_STREAM(uart_putChar, NULL, _FDEV_SETUP_WRITE);
void main(void) __attribute__((noreturn));

void uart_init(){

define BAUD 9600

include <util/setbaud.h>
UBRROH = UBRRH_VALUE;
UBRROL = UBRRL_VALUE;

if USE_2x

USCROA |= _BV(U2X);
else
USCROA &= ~_BV(U2X);
endif
UCSR@B |= _BV(TXEN); // enable transmit
1

int uart_putChar(char ¢, FILE *unused){
if (c = "\n") // a line feed character also

uart_putChar('\r', unused); // requires a carriage return
loop_until_bit_is_set(UCSROA, UDRE®); // wait for UDR® to be ready
UDRO = c; // write character
return 0; // return

}

void mainCvoid){
uart_initQ);
fprintf(&uart_out, "Hello, UART!\n");
stdout = &uart_out; // set up stdout
printf("UART demo...\n");
for (uint8_t i = 0; i < 10; i++)
printf("Number %i ", 1);
while(1);

20/02/14

11

Arduino Serial code

int led = 13;

// the setup routine runs once when you pre
void setup() {

initialize the digital pin as an output.
pinMode (led, OUTPUT):;
Serial.begin(9600);

/4 the loop routine runs over and owver again forever:

void loop() {
digitalWrite(led, HIGH):
delay (1000} ; y
Serial.println("Hello UART"):;
digitalWrite({led, LOW);
delay(1000);

turn
wait

he LED on (HIGH is the wvoltage level)
a ond

=
]
o

LED off by making the woltage LOW

a second

Bojeuy
qoer
asn

g-up

nding Ag'E
€L uid [enbig
ERIVEIETENY

(d8zevoanLy)
19]|03U0D0IDIY

suld [enbiq

Resistors Arrays

%Fill

Regulator

UIA 1SY
axyd ans

| G;(.LT J.TSHT

o]

B =ddE b _m
3m 233m D 30
(S| gw_‘rng
=] r= 9o = =o
e w Em¥% 2 I
=5 ~UEd 5 kg

g a8 = o

3 N o

20/02/14

12

Arduino Nano EFP2 RTC/INI schematics

S \
B Ardulno
[a%
Su1 J % ut
O O RESET . 25 PCERESET) uce
RESET Y1 5 uccz
= PB&XTALL) AUCC
—
[& | pB7(xTAL2) PD@RXD>
= 16MHz PD1¢TXDY
L - 28 | Apgr PD2¢IND@>
) PD3CINT1)
c1 —A8 23 | pegcances PD4CT@>

0.40F —82— 25 peocapc2

= A6 18 | anrg

PC1¢ADC1> PD5(TLY

PD&CAING)

—A3 26 | pe3apc3y PDZCAIND
—04 27 | peacapced

—A5 28 | peseapcs) PBECICP)

PB1(0C1>

Az 22 | apcs PB2(5S)

PB3MOST

2L 1 aGND PB4CMISD

2 onpt PBS(SCK>

GND2
ATMEGAL168-20AU

LED3

Exercise 1

* Installing and running Arduino tools.

* Opening and understanding basic blinking
Example Sketch and run it.

e Add Serial communication to Serial Monitor for
“debugging” your Sketch.

* Arranging time for soldering your own Bronze V2
board / Arduino Nano and make it compatible
with Sketch (only Nano).

* Exercise 2: probably debugging and repairing

your own board.

20/02/14

13

20/02/14

¥ Finding INI=Inst. of Neuroinformatics fg

\ = '
Irchel = =

[erspital

14

20/02/14

15

