
 

Printed 4/14/94 File: F-520:Thesis:other:thesis data:motion data:NN 127:nn127 paper Modified 4/ 14/94

 

1

 

Silicon Retina with Correlation-Based, 

Velocity-Tuned Pixels

 

†

 

Tobias Delbrück
139-74 Caltech

Pasadena CA 91125
818-356-6986

tdelbruck@caltech.edu

 

Abstract

 

—I report the first functional two-dimensional silicon retina that computes a complete set of

local direction-selective outputs. The chip motion computation uses unidirectional delay lines as tuned

filters for moving edges. Photoreceptors detect local changes in image intensity, and the outputs from

these photoreceptors are coupled into the delay line, where they propagate with a particular speed in

one direction. If the velocity of the moving edges matches that of the delay line, then the signal on the

delay line is reinforced. The output of each pixel is the power in the delay line signal, computed within

each pixel. This power computation provides the essential nonlinearity for velocity-selectivity. The

delay line architecture differs from the usual pairwise correlation models in that motion information

is aggregated over an extended spatiotemporal range. As a result, the detectors are sensitive to motion

over a wide range of spatial frequencies. 

 

† A brief abstract reporting preliminary results appeared as T. Delbrück, “A silicon network for motion discrimina-

tion that uses spatiotemporal interpolation,” 

 

Soc. of Neuroscience Abstracts,

 

 no. 143.8, p. 344, 1991. 

The author has just graduated from the Computation and Neural Systems Program at the California Institute of 

Technology, Pasadena CA 91125.

 

NN 127

 

This document was created with FrameMaker 4 0 2



 

NN127-Delbrück, Motion chip FINAL

 

—4/14/94 2

 

I have designed and tested functional one- and two-dimensional silicon retinas with direction-

selective, velocity-tuned pixels. A velocity-selective detector requires only a single delay element and

nonlinearity for each tuned velocity, and is sensitive to both light and dark contrasts. The use of adap-

tive photoreceptors and compact circuits makes for a well-conditioned input signal and small circuit

offsets, resulting in robust operation. All circuits work in subthreshold, resulting in low power con-

sumption. Pixels with three hexagonal directions of motion selectivity are approximately (225 

 

µ

 

m)

 

2

 

area in a 2-

 

µ

 

m CMOS technology, and consume less than 5 

 

µ

 

W of power. 

 

I. ANALOG HARDWARE MOTION COMPUTATION

 

In this introduction, I place the new chip in the context of previous approaches to analog-hardware

visual motion computation. Essentially, there are two approaches: Those that use spatiotemporal image 

 

gra-

dients

 

, and those that use spatiotemporal image 

 

correlation.

 

 Hardware systems that utilize each approach

have been previously built. The chip reported here falls into the second category.

Tanner and Mead built the first analog two-dimensional optical-flow chip [35][36][30]. The Tanner chip

computes a 

 

single

 

 motion vector for the 

 

global

 

 two-dimensional optical flow, using a gradient-based scheme

(for references, see [28]). The motion vector is computed cooperatively by a network of circuits, each circuit

using local spatiotemporal derivative information. The circuits reach a consensus on the global image

motion vector, using the overall constraint that the total derivative of the image intensity is zero. This con-

straint allows the chip to solve the aperture problem, which arises because a 

 

local

 

 measurement cannot

detect motion 

 

along

 

 an edge [28]. 

The two-dimensional direction-selective chip built by Benson and Delbrück [5] performs a different and

much simpler computation that is based on biological studies. The pixel outputs respond selectively to local

rightward motion, and the motion computation is feedforward, rather than cooperative. The architecture is

based on the idea of null-inhibition direction selectivity, developed by Barlow and Levick [4] to explain the

direction selective responses found in rabbit retinas. In a null-inhibition model, the pixel output is inhibited

by edges coming from the null-direction. In the preferred direction, the pixel output in response to an edge is

not inhibited, because the inhibition arrives after the excitation. 

I distinguish the 

 

value-

 

encoded global velocity-vector output of the Tanner chip, from the 

 

place-

 

encoded, direction-selective, velocity-tuned outputs of the Benson–Delbrück chip. The computations are

qualitatively different, because one encodes the pattern velocity as a vector with magnitude and direction,

and the other encodes the motion of features by the location of active outputs. The Tanner chip does a
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higher-level computation, integrating spatiotemporal image information from the entire moving image in a

cooperative calculation, whereas the Benson–Delbrück chip simply responds selectively to rightward versus

leftward motion. 

The operation of the Tanner chip is not robust, perhaps because of the demands of the mathematically

sophisticated motion algorithm it implements. High-contrast images, with sharp edges, are required if the

chip is to produce a direction-selective output, and the precision of the velocity measurement is poor. The

reason for this nonideal performance is the combination of inherent susceptibility of gradient-based schemes

to temporal and spatial noise, low-sensitivity receptors, and large circuits with poor offset characteristics.

The strongest signals are derived from places in the image with sharp gradients and high contrasts, but gra-

dient-based schemes require images with smoothly varying contrast if they are to obtain reliable estimates of

spatial and temporal derivatives. The performance of the chip is compromised severely by these conflicting

requirements.

The operation of the Benson–Delbrück chip is robust in comparison with that of the Tanner chip,

because the Benson–Delbrück chip, unlike the Tanner chip, responds correctly to real input scenes of moder-

ate contrast. There are several reasons for this performance difference. The algorithm is much simpler, the

circuits are more compact and hence less offset prone, and a well-conditioned input is generated by the use

of adaptive photoreceptors. However, this comparison is arguably pointless, given the major differences in

computation performed by the two chips. 

The null-inhibition architecture has the advantage of a large degree of direction-selectivity and hence,

inherently robust operation. The disadvantage is that it is difficult to produce a response-versus-speed tuning

that is other than a simple lowpass determined by the pixel spacing, so construction of a set of detectors

tuned to different speeds is not straightforward. Moreover, this architecture does not deal with the aperture

problem, and, in fact, knows nothing of global motion constraints.

The chip described here has place-encoded outputs that encode information about components of local

edge motion along the detector directions, like the Benson–Delbrück chip. It is also like the Benson–Del-

brück chip in that the motion computation does not deal with solving the aperture problem. It is like the Tan-

ner chip in that the computation integrates information over an extended spatiotemporal region. Our chip is

the first functional analog device that computes a full set of local direction-selective outputs in two dimen-

sions. It is also the first reported chip that uses correlation-based 

 

analog

 

 computation to produce direction-

selective, velocity-tuned outputs. (Reference [22] reports a correlation-based one-dimensional motion cir-

cuit that correlates digital pulses, produced by image intensity changes, in analog time.) 
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I omit discussion of other analog motion chips that have been fabricated only as one-dimensional cir-

cuits [22][23]. For the most part these architectures cannot be fabricated practically in a two-dimensional

architecture, because they are not parsimonious with wire. I also omit discussion of analog change-detecting

circuits [8][13], digital motion circuits [2], and discrete-component correlation-detector systems [16][32].

The remainder of this paper is organized as follows. Section II is a heuristic description of correlation

motion detectors, and of the delay line motion architecture in one and two dimensions. Section III describes

a mathematical model of the circuit operation in the time and frequency domains, and investigates the model

to understand the limiting behavior, and the differences between the new model and previous pairwise corre-

lation detectors. Section IV is a description of the circuits used in the chip. Section V is about qualitative and

semiquantitative measurements on the two-dimensional motion chip, and quantitative measurement on the

one-dimensional chip. Section VI and Section VII conclude the paper with a short discussion of future direc-

tions of this work and a summary of the results.

 

II. CORRELATION-BASED MOTION DETECTORS

 

The simplest correlation-based motion detector is shown in Fig. 1(a). A pair of spatially separated, fea-

ture-detecting cells feeds into a nonlinearity that detects coincidence of the two inputs. One of the inputs to

the nonlinearity is delayed. When the motion is matched to the detector spatial separation and delay, the out-

put becomes large. The nonlinearity, although often formulated as a multiplicative operation, can be any

operation that detects 

 

coincidence

 

 of the inputs. Hence, the correlation detector may linearly combine the

spatiotemporally separated inputs, and then use a threshold element, or any other expansive (faster-than-lin-

ear) nonlinearity. 

The correlation detector was conceived by Hassenstein and Reichardt during experiments on a beetle

visual system [18]. Their model, and later modifications worked out through experiments on the fly visual

system, are more complicated than the model in Fig. 1(a) [33]. The major elaboration is the addition of a

complementary direction selectivity. The output from the Hassenstein-Reichardt model is the difference

between two outputs tuned to complementary directions. This differencing operation removes the common-

mode signal. 

 

A.  Extension of the Simple Correlation Detector

 

My motion architecture extends the pairwise correlation model in Fig. 1(a), by using a unidirectional

 

delay line

 

 as a tuned filter for a particular velocity, as shown in Fig. 1(b). The input to the delay line comes
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from photoreceptors that respond to local intensity change. The photoreceptor outputs are coupled capaci-

tively into the delay line. The delay line is composed of low-pass filters. An edge passing over a photorecep-

tor creates a traveling signal in the delay line that spreads and decays with time. If the velocity of the edge is

matched to that of the delay line, the successive inputs to the delay line pile up in synchrony. If the input

velocity is not matched to the delay line velocity, the successive inputs arrive in asynchrony and do not pile

up. 

It is well known that the time-averaged output of a linear system cannot be direction or speed depen-

dent. In a linear system, we can alter the time order of the input without changing the time-averaged output,

Fig. 1.   Correlation-based motion-detectors. (a) Pairwise correlation detector. Nondirectional 

feature-detecting cells feed into an output nonlinear element that measures coincidence between the 

spatiotemporally separated inputs.The exact nature of the nonlinearity is not important, as long as it is 

expansive. (b) Extended correlation detector. Nondirectional cells (P) couple activity into a 

unidirectional delay line with delay τ per stage. The delay line signal (Dn) is large when the image 

motion is matched to the delay line speed. The expansive output nonlinearities (N) compute a velocity 

selective signal Mn that is monotonic in the magnitude of the delay line signal. 
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because the response to a sum of inputs is the same as the sum of the responses to each input individually.

Hence, the 

 

average

 

 signal on our delay line is not velocity selective. The 

 

amplitude

 

 of the signal clearly 

 

is

 

velocity selective. Measuring amplitude is a nonlinear operation. We can use any nonlinearity that measures

some metric of the amplitude of the delay line signal, and the result will be direction and speed selective. On

my chip, I use a compact circuit that computes an approximate squaring function of the delay line signal.

Hence, the nonlinearity approximately measures the filter output power. 

The nonlinear operation is an even function of its input, so the delay line activities caused by edges of

light and dark contrasts are both detected. A single nonlinearity, and a single delay line, are sufficient to

compute a direction-selective, velocity-tuned response for either sign of image contrast. 

The delay line architecture is robust against noise, because a particular output integrates information

from an extended spatiotemporal range of the moving image. This feature is shared with the human visual

system [31].

 

B. Two-Dimensional Architecture

 

In the two-dimensional chip, I use a hexagonal architecture that encodes any possible direction of

motion using three directions (Fig. 2). Each pixel computes the response to three principal directions of

motion. Since the three directions are nonorthogonal, any direction can be represented by weighted combi-

nations of the three 

 

nonnegative

 

 outputs. This basis set may be familiar from the representation of color

space by a set of three primary colors. In an orthogonal architecture, we would need four principal direc-

tions, each with nonnegative output, to represent an arbitrary direction of motion, or, equivalently, two bidi-

rectional outputs. 

Each pixel contains a single photoreceptor, three delay elements, and three output nonlinearities. The

three outputs are scanned out and are displayed on a monitor as three different colors, through use of a scan-

ning frame, as described in [29]. The Reichardt detector uses differencing of complementary directions to

reduce common-mode responses. In the two-dimensional motion chip, I use an analogous scheme to

increase the contrast between the three channels of output that is computed serially by the video driver cir-

cuits. This linear differencing operation does not do any additional information processing, so I will not dis-

cuss it further.

The aperture problem arises in any two-dimensional motion computation. A local edge-based measure-

ment can measure only the component of edge motion orthogonal to an edge, and cannot measure motion

along the edge. Another and more general way of stating this fact is that local measurements 

 

constrain

 

 the
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estimate of the actual pattern movement. An array of detectors measures a set of motion vectors, each mem-

ber of which is 

 

consistent

 

 with the movement of the pattern as a whole. The different detectors, however,

may disagree in their assumptions about the component of motion 

 

along

 

 their local edges. The global

motion vector is the vector that most closely agrees with the set of constraints imposed by the local measure-

ments. The Tanner chip ingeniously solves the constraint problem in a cooperative manner. 

The delay line motion architecture does no global computation to reconcile local measurements, so the

best that it can do, in principle, is the computation of the local motion vectors. In the present architecture,

these quantities are computed such that they are consistent with the observed motion, but there is no built-in

assumption that the measured motion is only orthogonal to the edge. The nonintuitive feature is that the

motion that is consistent with the observed set of outputs may not be orthogonal to the edges. The reason is

that a detector is sensitive to only spatiotemporal correlation along its preferred direction. An edge moving

at a speed 

 

S

 

 in a direction oblique to the preferred direction, with angle 

 

θ

 

, causes apparent motion along the

preferred direction with speed  (Fig. 3). 

 

III. THEORETICAL ANALYSIS OF MOTION CIRCUIT

 

To understand the properties of our model, and to derive results that can be verified experimentally, we

shall analyze the one-dimensional motion circuit in both the time and frequency domains. The time-domain

analysis is more intuitive. The frequency-domain analysis is more useful for comparison with measurement,

Fig. 2.  Two-dimensional architecture of the 

motion chip. Pixels are arranged in a 

hexagonal array. Each pixel contains a single 

photoreceptor, three delay elements, and three 

output nonlinearities. The delay lines run in the 

three principal directions shown by the arrows 

in the delay elements.

Delay Photoreceptor

S θcos⁄
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and for understanding the response of the system to variations in stimulus parameters, such as velocity and

spatial frequency. The nonlinearity is a simple feedforward operation done on the delay line signal, so our

analysis will concentrate on the linear delay line. Some of the symbols used in this section are shown in

Fig. 1

 

A.  Time-Domain Analysis

 

We shall compute the delay line response to a single moving bright edge. To do this calculation, we

compute the transfer function from photoreceptor to delay line, and the transfer function of an 

 

n

 

-stage delay

line. Combining these two transfer functions, we obtain the complete transfer function between the input and

the delay line output 

 

n

 

 stages later. Using the transfer function, we compute the step response. The response

to a moving edge is a sum over the temporally shifted step responses produced by the edge at successive

receptors.

The photoreceptor outputs are coupled capacitively into the follower-integrator delay line section.

Hence, the transfer function from receptor to delay line is the single high-pass filter

(1)

where 

 

s

 

 is the Laplace transform variable and 

 

τ 

 

is the time constant of each first-order section [30]. (It may

be helpful to refer to the circuit diagram in Fig. 9).The delay line—a chain of 

 

n

 

 first-order, buffered, low-

pass filters—has the transfer function

(2)

θ

S

λ

Fig. 3.  Apparent motion and wavelength effects. A 

grating pattern with wavelength λ, moving at speed S and 

angle θ over motion detector with preferred direction to the 

right causes an apparent motion along the array at the 

increased speed S/cosθ. The apparent wavelength seen 

by the array is also increased to λ/cosθ. The “apparent” 

motion can equally well be caused by true motion to the right at velocity S/cosθ of edges that are 

oriented at angle θ; there is no way, in principle, that the local measurement can distinguish the two.

Hin s( ) τs
τs 1+
--------------=

Hn s( ) 1

τs 1+( ) n
------------------------=
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We obtain the transfer function from photoreceptor input 0 to delay line output 

 

n

 

 by multiplying 

 

H

 

n

 

 and 

 

H

 

in

 

.

By computing the inverse Laplace transform, we find that the time response at the 

 

n

 

th delay line tap to a

bright intensity step at the first photoreceptor at time

 

 t

 

 = 0 is

(3)

for

 

 t

 

  > 0

 

.

 

 For 

 

n

 

  = 0, this function is a step-increase from 0 to 1, followed by a decaying exponential. For

, this function is an initially-linear increase from 0, followed by the same decaying exponential. In

general, (3) represents a wave packet that travels along the delay line, one stage per time 

 

τ

 

. Asymptotic anal-

ysis shows that as 

 

n

 

 grows large, the response approaches a Gaussian shape with constant area. The width of

the Gaussian broadens as , and the height decreases as . Note that the stimulus is a 

 

step

 

-input at the

photoreceptor that is high-pass filtered by the capacitive coupling to the delay line. 

A motion stimulus causes a succession of inputs to the delay line, where the time delay  between

excitation of successive stages is

 (4)

where  is the spatial separation between detectors, and  is the velocity of the moving pattern. Since the

delay line is a linear system, the response to a moving bright edge is the superposition of the responses to the

edge passing over all the contributing inputs. We define 

 

R

 

n

 

(

 

t

 

) to be the delay line response at tap 

 

n

 

, in

response to a moving bright edge that passes over the first input at time 

 

t

 

 = 0. It is easy to compute 

 

R

 

n

 

(

 

t

 

): 

(5)

We have assumed that either the delay line or the motion starts at tap 0. Fig. 4(a, c), show a graphical repre-

sentation of the 

 

linear

 

 delay line response to a bright bar moving over the delay line at the optimum velocity

and at one half of the optimum velocity. The bright edge causes positive activity, and the dark edge causes

negative activity. Both signs of edge-contrast information travel along the delay line with a fixed speed and

rn t( ) 1
n!
----- t

τ
-- 

  n
e

t τ⁄–
=

n 1=

n 1 n⁄

∆T

∆T
L
S
---=

L S

R0 t( ) r0 t( )=

R1 t( ) r1 t( ) r0 t ∆– T( )+=

R2 t( ) r2 t( ) r+
1

t ∆– T( ) r0 t 2∆– T( )+=

…

Rn t( ) rk t n k–( ) ∆T–( )
k 0=

n

∑=



NN127-Delbrück, Motion chip FINAL—4/14/94 10

Fig. 4.  Theoretical response of delay line to moving bar for two velocities. A bright bar of width 6 

pixels, traveling to the right over the delay line, passes over the first tap at time t = 0. The 

mathematical form of the delay line response to the moving bar at the nth tap is 

, where R is the response to a single bright edge, computed in the text 

as (5), and S is the speed in pixels/time. Each trace shows the response at a particular tap as a 

function of time. Tap number is shown to right of trace. The linear delay line signals Bn(t) are shown in 

(a) and (c), and the result of passing the linear delay line signal through the antibump nonlinearity 

(Fig. 5), , is shown in (b) and (d). In (a) and (b), the edge travels at the natural speed of the 

delay line. In (c) and (d), the edge travels at one-half the speed of the delay line. When the bar motion 

is matched to the delay line speed, the successive inputs pile up, in response either to the bright or 

the dark edge. The nonlinearity rectifies Bn(t), so both edge contrasts appear as a positive output. 

When the motion is not matched, the successive inputs arrive in asynchrony with the delay line signal, 

and the resulting output is smaller.

Bn t( ) Rn t( ) Rn t 6
S
----– 

 –=

N Bn t( )[ ]

t

Linear Delay-
Line Signal

After Nonlinearity

Linear Delay-
Line Signal

Bn(t)

After Nonlinearity

10

(a) (c)

(b) (d)

1
2

4
8

16

0

n

t

t

Ν(Βn(t))

t10
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Bn(t)
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direction, though the activity has opposite polarity for the two edges. When the edge motion is matched to

the speed of the delay line, the activity on the delay line piles up maximally. We can see how, in this linear

system, the integrated response is unaffected by the stimulus velocity, even though the activity has larger

peak magnitude when the motion is matched to the delay line speed. The longer the motion continues, the

larger the peak activity. Saturating nonlinearities eventually limit the response of the delay line. 

B. Antibump Output Nonlinearity

The antibump output-nonlinearity-circuit used in the motion chips computes the function

(6)

where Ib is the bias current, x is the input voltage, in units of approximately , and  is a

geometrical layout parameter [11]. The output is a current. The shape of this function is shown in Fig. 5. The

output is parabolic for small input, and saturates at the adjustable bias current. The width of the valley region

in subthreshold is determined by layout geometry. The valley width can be increased by using an above-

threshold bias current. 

The output from the motion circuit is the nonlinearity (6) applied to the signal on the delay line. In

response to the moving edge signal Rn(t) on the delay line, the velocity-tuned outputs are .

Fig. 4(c, d) show the response to the same moving bright bar after the nonlinearity is applied. We can see

N x( )
Ib

1
w
4
----sech

2
x+

------------------------------=

2kT
qκ

--------- 70  mV ≈ w 20≈

Fig. 5.  The antibump output nonlinearity (6). 

The input is a differential voltage x shown in 

natural input units, and the output is a current, 

shown here normalized to 1.

0 7
x   (kT/2qκ)

N(x)

-7

1

N Rn t( )( )
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how the nonlinearity makes both the peak and integrated responses strongly velocity selective, and also how

the even characteristic of the nonlinearity results in equivalent detection of both bright and dark edges.

 

C. Frequency-Domain Analysis

 

In the frequency domain, the stimulus is a one-dimensional sinusoidal variation in contrast, with wave-

length 

 

λ

 

 and velocity 

 

S

 

 (Fig. 6). If the velocity is constant, then each input to the motion array is a simple

sinusoidal function of time with the same temporal frequency,

(7)

at each input. The signal at a particular tap of the delay line is a sum over all the contributing inputs. Each

input is first phase shifted by the spatial separation, and then phase shifted again by the filtering in the low-

pass delay line stages. The delay line signal is a pure sinusoidal function of time, with the same temporal fre-

quency at each tap, multiplied by the transfer function for that tap.

The pattern phase shift of the input signal between each pixel, due to the pixel spacing and the sinusoi-

dal spatial variation of image contrast, is

 (8)

ω 2πS
λ

----------=

Fig. 6.  Sinusoidal grating pattern moving over motion array. The grating moves at speed S. Pixel 

locations are shown as arrows. The pattern has wavelength λ, and the pixel spacing is L. The 

temporal frequency at each pixel is . The pattern phase shift between pixels is 

.

ω 2πS λ⁄=

φ 2πL λ⁄=

S

λ

L

ϕ 2πL
λ

----------=
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Each stage of the delay line is separated by a low-pass filter, with transfer function

(9)

Each input is a single high-pass filter, with transfer function

(10)

We obtain the complete transfer function for tap n by summing the inputs from taps 0 through n, resulting in 

(11)

where we have factored out the high-pass filter common to each stage. The summation in (11) is a geometric

series, so we can write the transfer function explicitly for an arbitrary number of stages:

(12)

This expression represents a phasor that rotates about the complex origin at a frequency ω. The physically

measurable part of the expression is the projection of (12) onto any axis in the complex plane, and is much

more complicated than is (12). 

The average signal on the delay line in response to a sinusoidal input pattern is zero, regardless of the

velocity. The length of the phasor, however, is strongly direction and velocity selective. To obtain a response

that is tuned for velocity requires a nonlinear operation that measures the length—on some metric—of the

phasor. The delay line signal is fed into the antibump nonlinearity, which computes a squaring operation for

small input signals. In explicit mathematical form, the time-dependent velocity-tuned output is

, (13)

where N is the antibump nonlinearity in (6). Hence, the operation in (13) is proportional to the squared abso-

lute transfer function, for low-contrast stimuli.

1
iωτ 1+
------------------

iωτ
iωτ 1+
------------------

Hn ω( ) iωτ
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------------------ 1 e
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------------------ e
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We can learn about the behavior of the system by studying the amplitude of the linear transfer function

(12)—that is, the length of the phasor. We shall examine the case of a seven-input system. In Fig. 7, I have

plotted the phasor at the seventh tap, H6(ω), in response to the motion of a sinusoidal pattern in the preferred

and null directions. The speed of the motion, in each case, is near the optimum speed for the preferred direc-

tion. Each phasor is shown as a number of adjoining line segments; each of these components is the contri-

bution of one pixel input to the complete phasor. 

When the grating moves in the preferred direction at the optimum speed, the phasor is as long as it can

be, given an input pattern of a given amplitude and wavelength, because the components all point in nearly

the same direction. They all point in the same direction because, for each input, the total pattern-phase-shift

and the total low-pass-filtering-phase-shift match. There is also an overall rotation of the entire phasor, due

to the high-pass filtering at each input to the delay line. 

 In contrast, when the pattern moves in the null direction, the phasors sum destructively, and the result-

ant phasor curls up on itself. The complete phasor is short, no matter how many inputs are combined,

because the components always approximately cancel one another. The length of the phasor, as a function of

the speed of the motion, has wiggles, corresponding to the periodic behavior of the destructive cancellation.

These wiggles can be seen in the experimental data shown in Fig. 15 and Fig. 17.

Many of the correlation-based direction-selective models in the literature correspond to a two-input

(n = 1) version of this system. Hence, it is interesting to compare the case of a two-input system with an sys-

Fig. 7.  Phasor summation properties for a seven-stage system. H6(2πS/λ) is plotted on the complex 

plane. The symbols are defined in Fig. 6. The contributions of individual taps are shown as 

component line segments; taps 1 and 7 are labeled. The optimum velocity is near L/τ = 1. 

S = 1.6

7  taps ,  λ = 10,  τ = 1,  L = 1

S = -1.25

Null Preferred

Re

Im

7

1

7
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tem that is effectively infinitely long. We shall first derive the mathematical behavior for each system, and

then contrast the two systems.

Long System

The explicit form of the transfer function for an infinite number of stages is given by (12) with :

(14)

(Note that this transfer function includes the high-pass input to the delay-line.) By examining the behavior of

the n-dependent term in the numerator of (12), we can determine that this limiting form is accurate as long as

the following condition holds:

(15)

This restriction seems severe, but examination of the measured tuning curves shows that, in practice, there

are only scale differences in the responses after the first few taps. We shall examine the behavior of (14) to

understand how it is affected by spatial wavelength. 

Since the numerator of (14) is 1, we can find the maximum value of the response by minimizing the

absolute value of the denominator. This simple computation reveals that the maximum value of

occurs at

 (16)

corresponding to the speed

. (17)

For long wavelengths,  is small, and we find the peak tuning occurs at the frequency

(18)

corresponding to the speed

(19)
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which is reassuring, since this optimum speed corresponds with the intuitive idea that optimum motion is

motion matched to the delay-line speed. The optimum speed is invariant with wavelength, for wavelengths

longer than a few pixel spacings. This result is also surprising, because correlation models do not generally

display this invariance. 

We can see how this behavior comes about by examining the limiting case of a long wavelength. As we

increase the wavelength λ, we decrease the pattern phase shift ϕ between pixels. (The pattern phase shift is

the phase shift of the input, between adjacent pixels, just due to the wavelength of the pattern). The response

maximum does not move, because the decrease in ϕ is compensated by a decrease in low-pass phase lag due

to decreased frequency ω in the low-pass filter. 

The first-order, low-pass phase lag cannot become greater than 90 ˚. Eventually, as we decrease wave-

length, the pattern phase shift decreases faster than does the low-pass phase lag. To compensate, the pattern

must move faster to obtain an increased phase lag from the low-pass filter. Hence, the shorter the wave-

length, the higher the optimum speed. In fact, when λ = 2L, the optimum velocity approaches infinity. This

limit corresponds to the Nyquist sampling criterion—the spatial frequency pattern is sampled twice per

cycle by the array. The trend toward higher optimum speed with shorter wavelength is visible in the experi-

mentally measured velocity tuning curves in Fig. 17.

At the optimum velocity, in the limit λ >> L, the squared magnitude of the transfer function takes the

value

(20)

Hence, the squared magnitude of the response at the optimum speed goes as the square of the wavelength,

independent of the optimum speed. At low speeds, ω << 1/τ, and the squared magnitude of the transfer func-

tion is given by

(21)

Hence, for low speeds, the squared magnitude of the response is proportional to the square of the speed and

invariant to wavelength. (The apparently conflicting results in (19), (20) and (21) are actually not conflict-

ing, because the assumption that leads to (21) breaks down at Smax.)

H∞ ω( )
Smax

2 λ
πL
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=
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S L τ⁄«

2 S
L τ⁄
---------- 

  2
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Two-Input System

As stated earlier, the two-input system is similar to existing correlation-based direction-selective detec-

tors. Let us now consider the behavior of a two-input system in the same way we just did for the effectively-

infinite delay line system. For two inputs, (12) becomes

(22)

We will form a particular instantiation of the pairwise Reichardt-type correlation detector by taking the dif-

ference between the squared magnitude of two pairwise detectors tuned to opposite directions, resulting in

the following expression.

(23)

We can think of this detector as the difference between two time-averaged pairwise detectors, like the one

shown in Fig. 1(a), with opposite direction selectivities. The common-mode terms have canceled. The tun-

ing is separable into a temporal and a spatial product. Hence, we can immediately deduce that the optimum

response occurs at a particular temporal frequency, and not at a particular velocity. The pairwise detector is

not a velocity-selective filter, but rather is a temporal-frequency–selective filter whose response is modu-

lated by the geometrical interference term , familiar from the fly literature (see, for example, [7]). We

can find the optimum temporal frequency ωmax for the two-input system in the same way that we found Smax

for the infinite delay line. Independent of wavelength, the maximum of (23) occurs at the temporal fre-

quency

 (24)

For low speeds, the temporal frequency is small compared with 1/τ, and we compute the response (23) as

approximately

. (25)

Hence, the response to slow motion depends on the wavelength through the  term, and is cubic in the

speed. 

Fig. 8 compares the theoretical transfer function amplitudes for the two-input system and the long sys-

tem cases. Note that in this figure, we compare  with , rather than with the Reichardt detector in

(23). In the two-input system, the optimum speed is proportional to wavelength (in accordance with (24)),

but the amplitude of the response at the optimum speed is relatively invariant to wavelength. In the long sys-
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tem, the optimum speed and the low-speed response are invariant to wavelength, but the amplitude of the

response at the optimum speed is proportional to wavelength. We can also see these characteristics in the

measured tuning curves shown in Fig. 17. Table 1 lists these theoretical results. In summary, the delay-line

architecture differs from the pairwise detectors in that it is sensitive to stimuli with low as well as high spa-

tial frequencies. The pairwise detector, because of the locality of the computation, cannot be very selective

for motion of patterns with long wavelengths. The delay-line detector, in contrast, aggregates information

over a spatial range corresponding to an arbitrarily-long wavelength, and hence can retain direction and

speed selectivity even for long-wavelength patterns. 

Pairwise detector: Delay-line detector: 

Location of 
optimum 
response

 (for )

Low-speed 
response  (for )

Response at 
optimum 
speed

∝
∝  (for )

Table 1.  Comparison between pairwise Reichardt-type detector and delay-line detector. 

Symbols are defined in Fig. 6. 

Fig. 8.  

Theoretical plots of the 

magnitude of the transfer 

function for (a) two-stage 

system, compared with 

(b) infinite delay line, for 

various wavelength stimuli, 

shown next to curves. 
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IV. THE MOTION CIRCUIT
The circuit for a single stage of the motion circuit is shown in Fig. 9. The output from an adaptive, high-

gain, logarithmic photoreceptor circuit is coupled capacitively into a delay line stage. The delay line consists

of a line of buffered, first-order, low-pass filters, implemented on the chips with follower integrators. The

output nonlinearity is implemented with an antibump circuit. 

The adaptive photoreceptor is essential for the robust operation of the circuit, because it provides well-

conditioned input to the delay line over a wide range of lighting conditions. The receptor circuit has been

reported previously [10][13][27] and is described in detail in [12]. In brief outline, the operation of the pho-

toreceptor circuit goes as follows. The input leg of the receptor, consisting of the phototransistor and the

source-follower feedback transistor, forms a signal voltage that is logarithmic in the intensity. The feedback

circuit amplifies the logarithmic signal, and centers the operating point of the output signal around the his-

tory of the signal. The time-averaged output signal is stored on the feedback capacitor and serves as the ref-

Fig. 9.  

Circuitry for a single stage of 

the motion circuit. An 

adaptive photoreceptor, with 

a contrast-sensitive gain of 

about 1 V/decade, feeds into 

a source-follower buffer, 

whose output couples 

capacitively into the follower 

integrator. The velocity-

selective output current is 

computed by the antibump 

From previous
stage

To next stage

Photoreceptor

Buffer

Delay element

Antibump
expansive

non-linearity

Output
current

Vref

Vpu

Vb
τ

Q

expansive-nonlinearity circuit. When the delay line signal is pushed away from its equilibrium point 

(Vref) by activity on the delay line, the output current increases, because the center leg of the 

antibump circuit is turned off. For additional directions of selectivity, only the Buffer, Delay element, 

and Antibump nonlinearity must be duplicated—all directions share the same photoreceptor input.
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erence around which the response is computed. The pair of diode-connected transistors act as a resistor-like

adaptive element with monotonic I-V characteristic. The use of adaptation makes for a receptor with simul-

taneous high sensitivity and wide dynamic range. 

The output from the adaptive photoreceptor connects to the input of a source follower amplifier that

buffers the output of the receptor. Different directions of selectivity use separate buffers that share the com-

mon photoreceptor input. The source follower isolates different directions in the case of a motion network

with more than a single direction of selectivity. A separate source-follower is used for each direction. The

source-follower output can follow a decreasing input signal only as fast as the bias current can discharge the

output. It can follow increasing signals at an arbitrary rate, determined by the input voltage. By biasing the

follower strongly (i.e., turning up Vb), we ensure that the source-follower output can follow accurately both

increasing and decreasing outputs from the photoreceptor. 

The follower-integrator uses a simple five-transistor transconductance amplifier [30]. These simple

transconductance amplifiers suffer from systematic offset of several mV, due to Early-effect drain conduc-

tance in the differential pair and in the current mirror. Over a 25-stage delay line, the offset can be more than

100 mV. Since we compute the output of the pixel relative to a fixed reference voltage Vref that is the input to

the first stage of the delay line, this offset is important. We set Vref near Vdd, so that the differential pair and

the current mirror are both balanced. The speed of the delay line, and hence of the velocity tuning, is set by

the bias τ of the transconductance amplifier.

The voltage on the delay line connects to the input of an antibump circuit [11]. The other input to the

antibump circuit connects to the reference voltage Vref. If any activity on the delay line pushes the voltage

away from Vref, either in the positive (bright-edge) or in the negative (dark-edge) direction, the output cur-

rent becomes larger, thus computing the power-like measurement of the linear delay line signal. Details of

the antibump circuit operation are given in [11]. In brief, the antibump circuit works because the center leg

of the circuit, consisting of the series-connected transistors marked with Q in Fig. 9, turns off when the dif-

ferential input voltage is sufficiently large, forcing the bias current to flow through the outer legs of the cir-

cuit.

The delay line architecture for this circuit was inspired by an earlier architecture for sound synthesis of

visual images [30]. The SeeHear chip sees an image, through use of on-chip photodetectors, and converts

the image into an auditory equivalent of the visual image. This SeeHear chip used the same scheme of pho-

todetector signals coupling into linear delay lines. The delay lines serve to synthesize the interaurel delay

cues that drive the auditory-localization system in the brain. 
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The layout for one pixel from the two-dimensional motion chip is shown in Fig. 10. Most of the pixel

area is covered with wire and capacitance, rather than with transistor. The amount of interpixel wiring is

minimal compared with the amount of wire used for routing bias signals into the pixel or routing outputs

from the pixel. The architecture is efficient, because these input and output signals are essential and occupy

most of the pixel area.

V. EXPERIMENTAL RESULTS
In this section, I present experimental results from a two-dimensional motion chip with the hexagonal

architecture, and from a one-dimensional motion chip with two opposing delay lines. 

A.  Results from Two-Dimensional Motion Circuit

Fig. 11 shows the real-time scanned output from the two-dimensional motion circuit in response to two

moving patterns. Part (a) shows the response to a drifting square-wave grating. The buildup of activity away

from the edge of the array in part (a) of the figure is evident as an increasing saturation of the color of the

output. The longer the motion is visible to the array, the larger the response. Part (b) shows the response of

the chip to a rotating spiral pattern that produces the illusion of expansive optical flow. The chip computes a

RB

CNF

P100 µm

Fig. 10.  Layout of pixel of two-dimensional 

motion circuit with hexagonal architecture. Pixel 

has one photoreceptor, three follower 

integrators, and three antibump nonlinearities. 

Lines indicate circuit components. Keys: 

F = follower, N = antibump nonlinearity, 

C = capacitor, B = buffer, P = phototransistor, 

R = photoreceptor. Scale bar shows 

dimensions. This pixel is arranged in the 

hexagonal architecture shown in Fig. 2. 
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pseudolocal flow field. Motion that is not in a principal direction appears as a combination of the colors cor-

responding to the principal directions.

This chip consists of a 26 by 26 hexagonally arranged array of pixels. The power consumption of the

core of the chip (all the analog computation done by the pixels) is 1.5 mW (dark) to 8 mW (light), depending

on the brightness of the illumination, and hence on the raw pixel photocurrent. Hence, the power consump-

tion of the analog computation, independent of photocurrent, is 1.5 mW, or 2.2 µW/pixel. About 80 % of this

power is supplied to the antibump circuit, which I run at above-threshold bias to widen the transfer charac-

teristic. The rest of the chip—consisting of the scanning frame, the clock driver, and the on-chip video

amplifiers [29]—uses another 26 mW. The size of each pixel is 224 by 225 µm; the entire chip fits on a 6.8-

by 6.9-mm die and is fabricated in a 2-µm, double poly, n-well process available through MOSIS, the

DARPA fabrication service [9].

Fig. 12 shows the directional tuning for the pixels in the two-dimensional chip. These plots show the

average angular tuning for each of the directions represented by a pixel, for three different movement

speeds. The responses are plotted in polar coordinates, and the distance from the origin is the magnitude of

the average response. For speeds at or higher than the optimum velocity, the relative values of three outputs

unambiguously determine the direction of the normal component of edge velocity. However, for speeds

lower than the optimum, motion of a grating in a direction oblique to the detector orientation excites a detec-

tor more than motion at the same speed along the detector, resulting in responses with two peaks. This char-

acteristic is an aspect of the aperture effect, since the delay-line detectors correlate image information along

only the detector orientation. 

B. Quantitative Results from a One-Dimensional Motion Circuit

I collected quantitative data primarily from a one-dimensional version of the motion circuit with two

directions of selectivity. Fig. 13 shows the response from two taps of the one-dimensional circuit in response

to a moving sinusoidal pattern. The buildup of direction selectivity is evident in the difference between the

response of the early and late taps. A systematic asymmetry is evident in the lack of frequency doubling,

except for the largest response. I am not certain of the origin of the asymmetry, although I suspect either the

source-follower buffer or the photoreceptor.

Fig. 14 shows velocity-tuning curves for a number of taps from the same one-dimensional motion cir-

cuit, in response to the same moving pattern. The velocity tuning becomes sharper and more direction selec-

tive for later taps, although it appears that the tuning begins to approach a limiting form after about tap 15.
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Fig. 11.  Color photographs showing the video output of the two-dimensional motion chip to motion 

(a) of a square-wave grating pattern in a single principal direction (arrow), and (b) of a rotating spiral 

pattern that produces illusory expansive optical flow (arrows). The outputs of the chip encode motion 

downward as blue, motion upward and to the right as red, and motion upward and to the left as 

green. Encoding of intermediate directions is evident as mixing of the primary colors. The dynamic 

nature of the output of the chip makes direct photography difficult, so we produced these pictures by 

video taping the output from the color monitor, and then photographing the freeze-framed screen of 

the video-tape monitor.

(a) (b)
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Fig. 12.  Directional-tuning of pixel in two-

dimensional chip, for different stimulus speeds. 

Stimulus is sinusoidal grating pattern with 

wavelength approximately 10 pixel spacings. Each 

polar plot shows the response, measured as 

average video output voltage, of the three outputs 

from a pixel near the center of the chip. Each curve 

is labeled with an arrow showing the orientation of 

the delay line. I normalized each polar curve to the 

same maximum to adjust for monitor brightness 

corrections in the video circuits. The scatter in the 

points shows the noise in the 2 second averages. 

The solid curves are Bezier curves fitted by eye to 

the data points. 

The stimuli in (a), (b), and (c) differ only in 

grating speed. In (a) the grating moves at the 

optimum speed, in (b), at half optimum speed, and 

in (c), at twice optimum speed. In (b), the apparent 

motion effect from Fig. 3 is evident as doubly 

peaked responses that are roughly perpendicular 

to orientation of delay line. In (c), the response does 

not display the same doubly-peaked effect, 

because oblique motion is faster than orthogonal 

motion, so oblique motion excites pixel less than 

does true motion. 
(c) S = 2 Smax

(a) S = Smax

(b) S = Smax/2
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The tuning curves shown in Fig. 14 are measurements of the peak-to-peak output voltage from the circuit.

The theoretical form of this measurement can be computed from (13), plus the transfer function of the loga-

rithmic current-sense amplifier used in the scanning frame [29]. In Fig. 15, I show fits to the data in Fig. 14.

Only the tap number was varied among the theoretical curves; all other parameters (wavelength, spatial fre-

quency, time constant, antibump circuit parameters, logarithmic current-sense amplifier parameters) were

kept constant.The quality of the fits is remarkable, considering that the input to the system was from a grat-

ing pattern printed on a piece of paper. 

A number of nonlinearities have been ignored in the analysis. The effect of saturating nonlinearities can

be seen in Fig. 16, which compares the velocity tuning for low- and high-contrast grating patterns. The high-

Fig. 13.  Measured response from two taps of a one-dimensional motion circuit with both directions 

of sensitivity (see upper left). The stimulus is a moving low-contrast grating pattern. The motion 

network had a total of 21 taps. I simultaneously recorded tap 2 in one direction and tap 18 in the other 

direction (numbering starts at zero, as in the text), and I plot the output voltage from the logarithmic 

current-sense amplifier. The grating initially moved in the tap 2 preferred direction and in the tap 18 

null direction; it then changed direction. After a slight latency, the response from tap 18 became much 

larger than that of tap 2. The lack of frequency doubling, except in the largest signals (arrows), arises 

from a systematic offset of unknown origin.
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contrast grating pattern saturates the differential inputs in the follower integrators or in the antibump nonlin-

earity, causing a shift of the peak response toward a lower velocity, and a widening of the peak. 

Fig. 14.  The velocity tuning for a number 

of taps of a one-dimensional motion circuit. 

Plotted are the peak-to-peak outputs from 

the logarithmic current-sense amplifier  fed 

from the antibump nonlinearity at each tap. 

The tap number is shown next to each 

curve. The gain of the logarithmic sense 

amplifier is approximately 100 mV per 

decade of current. Circuit offsets are 

visible as an inversion of the expected 

order between taps 6 and 9.
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Fig. 16.  Effect of saturating nonlinearities on motion-circuit response. The data in the top curve were 

collected with the use of a high-contrast (≈ 50 %) grating; those in the lower curve were collected with 

the use of a low-contrast (≈ 10 %) grating.
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Fig. 17 shows the velocity tuning of several taps of the network for different wavelength stimuli. For the

late taps, the peak response occurs at a constant speed, relatively invariant to wavelength. For tap 1, the opti-

mum velocity is a strong function of wavelength. For all the taps, the primary effect of varying the wave-

length of the stimulus is a simple scaling of the amplitude of the response with wavelength. The speed of the

optimum response shifts toward higher speeds as the wavelength is decreased. All these effects are consis-

tent with the theoretical analysis presented earlier. The scaling of tap 1 response amplitude with wavelength,

however, is inconsistent. I think that this result is due to a defocused image, which decreases the effective

modulation depth of the image more for shorter wavelengths, and hence results in a smaller response for

shorter wavelength.

Fig. 15.  Velocity tuning with 

theoretical fits. Each plot shows 

measured velocity-tuning data as 

squares, with theoretical fits as solid 

curves. Response plotted is the peak-to-

peak output voltage from a logarithmic 

current-sense amplifier that senses the 

antibump output current. Theoretical 

curves are derived from (14), plus the 

transfer function for the sense amplifier. 

The tap number is shown at the top of 

each curve and corresponds to the 

numbering used in the theory. Note the 

vertical scale—the response grows with 

tap number, as in Fig. 14. Arrows point 
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out wiggles in null direction response that are fitted by theory. All parameters in the model are 

identical for each theoretical curve, except for the tap number.
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VI. DISCUSSION
The inspiration for the spatiotemporal integration properties of the chip’s motion architecture came

from psychophysical observations of human motion perception [31]. I am aware that cortex is far more com-

plex than my simple model. The important thing to point out, however, is that the robust functioning of the

chip is at least partially due to the spatiotemporal aggregation, while I know of at least three other attempts

to build functional analog correlation detectors that have only marginal performance. The spatiotemporal

aggregation in the chip also has the consequence that it allows the computation to see motion over a wide

Fig. 17.  Effect of changing the stimulus wavelength. Each plot shows the measured output of a 

particular tap of the one-dimensional motion chip as a function of the stimulus velocity, in response to 

a moving sinusoidal grating pattern. In each graph, four plots are shown, one for each wavelength of 

the stimulus. The numbers on each plot show the wavelength, in pixels, of the grating.
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range of spatial frequencies, as opposed to the short spatial scales that a pairwise detector is capable of dis-

criminating.

A given combination of the three pixel outputs can correspond to a range of possible pattern velocities

of the actual scene. This characteristic is an expression of the aperture effect, and is true for any local motion

detector. The three spatiotemporal correlations computed in each pixel are valid computations in the sense

that the information they report is consistent with a possible motion of a one-dimensional pattern. It can turn

out that the output is not consistent with a motion orthogonal to the edge, as seen in Fig. 12(b). However,

there is absolutely no reason why motion must be orthogonal to an edge. At first sight, the apparent-motion

effect suggests why cortical direction-selective cells are orientation tuned to edges orthogonal to the pre-

ferred direction, and why fly motion-sensitive cells are sensitive to the temporal frequency more than to

image speed [14][20]. The argument goes that, in cortex, the orientation tuning removes the ambiguity about

edge motion by ensuring that the computation measures only those motion components that are orthogonal

to the edge. The same argument may be made in flies [19][39]. However, I believe that it is not settled

whether these arguments are computationally valid or only opportunistically based on particular aspects of

experimental observations.

The receptive field of the delay line motion detector resembles a simplified Adelson-Bergen spatiotem-

poral energy model [1]. Different spatial locations in the receptive field have different time delays to get to

the output of the detector. The spatial receptive field is a long, skinny, rectangle starting at the location of the

pixel and extending back along the delay line. The antibump output nonlinearity is similar to the squaring

nonlinearity used in the Adelson-Bergen detectors. My detectors share receptive field with each other,

through the common shared signal on the delay line.

One approach to performing full computation of the image motion is to plaster the input space with tun-

ing curves. In cortex, there are spatial- and temporal-frequency tuned neurons with many different tuning

curves [3]. The ensemble of broadly tuned, imprecise responses, that covers the whole space of inputs, can

be combined to form a precise estimate of optical flow [17][21][24][37]. In comparison with some models of

cortical motion computation, the number of velocity tunings in my motion chip is tiny—only three curves

are used to cover the entire space of inputs. Models of cortex often plaster the space with dozens or hundreds

of different tuning curves. Can we build systems with even tens of tuning curves? Not on one chip! This

approach would require a number of motion chips because of the large number of required tuning curves.

The problem of integrating multiple massively parallel analog chips is now being addressed [26].

It would be good to automatically adjust the tuning of the motion detector to match the input image, in

analogy with other adaptive sensory processing like the automatic gain control used in the photoreceptors.
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This strategy would use the available dynamic range more fully, and the adaptation state itself would give

information about the image motion. Biological studies suggest that animals with cortex do not adjust the

tuning curves, while insects do. (However, people have not looked very hard in cortex for short–time-scale

adaptive behaviors.) The fly visual system has only a few tens of visual output neurons. These direction-

selective, velocity-tuned neurons, which integrate information from the entire visual field, adjust their tuning

curves in response to the scene velocity [6][25][34][38]. The adjustment takes the form of a variable time

constant that is shorter for higher image velocities or temporal frequencies (which it is—velocity [34] or fre-

quency [6]—is under contention). This scheme is attractive from a chip designer’s point of view, because it

potentially allows a single velocity-tuned unit to cover a large dynamic range and still retain high sensitivity,

in a manner analogous to the adaptive photoreceptor circuits used in the pixels. 

VII. SUMMARY
I have described the first functional two-dimensional analog VLSI implementation of a motion detector

based on the 35-year-old Hassenstein–Reichardt correlation detector. The delay line extension to the usual

pairwise correlation model has the novel functional property that it integrates information over an extended

spatiotemporal region. The functionality of this chip is part of an accumulating body of evidence that we

will eventually build complete, functional, neuromorphic visual systems.
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