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Abstract

In a recent Bayesian model by Weiss, Simoncelli, and Adelson, motion perception is biased by a prior favoring slow speeds. This

model predicts qualitatively an impressive variety of phenomena, including the dependence of perceived speed on contrast. We show

that the model can also generate quantitative predictions: for a drifting grating with contrast c, perceived speed is proportional to

cq/(kq þ cq), with k, q constants. We tested this expression on measurements of perceived speed as a function of contrast. Observers

indicated the slower of two drifting gratings, a test and a standard. For each test contrast we found the test speed that appeared to

match the standard speed. The model fits the data, but only if q is less than 2, the value it would have if the internal representation of

contrast were linear. The Bayesian model can make correct quantitative predictions, but needs to be extended to incorporate a more

realistic, nonlinear representation of contrast.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Work in the last decade has led to a model of motion
perception that is simple and powerful (Ascher &
Grzywacz, 2000; Simoncelli, Adelson, & Heeger, 1991;
Weiss & Adelson, 1998; Weiss, Simoncelli, & Adelson,
2002). According to this model, observers are Bayesian:
perception of motion results from the product of a
likelihood based on the evidence at hand and a prior
founded on a priori knowledge (Fig. 1A). The product is
called the posterior:

Posterior ¼ Prior� Likelihood:

Perceived velocity vperceived is the one that maximizes the
posterior:

PosteriorðvperceivedÞ ¼ maxðPosteriorÞ:

The likelihood is a probability distribution centered on
the physical speed of the stimulus, vreal. The spread of
this distribution is due to noise in the measurement of
speed. The prior is a probability distribution centered on
a speed of zero, so that in the absence of further infor-
mation (e.g. in the dark) one does not assume motion in
any particular direction. The peak of the posterior,

perceived speed vperceived, is lower than the physical
stimulus speed vreal because the prior biases the estimate
towards zero.

This model explains qualitatively an impressive vari-
ety of motion perception phenomena (Weiss & Adelson,
1998; Weiss et al., 2002), including the classic observa-
tion that stimuli appear to move slower at low contrast
than at high contrast (Blakemore & Snowden, 1999;
Stone & Thompson, 1992; Thompson, 1982). This effect
can be strong enough to affect our everyday life. For
example, it might underlie a tendency for drivers to
accelerate when visibility is reduced by fog (Snowden,
Stimpson, & Ruddle, 1998).

The model predicts the dependence of perceived
speed on contrast because decreasing contrast increases
the noise in the measurement of vreal, hence broadening
the likelihood and allowing the prior to exert more
weight. At low contrast, therefore, vperceived is close to
zero (Fig. 1A). At high contrast, instead, noise is low, so
likelihood is sharp (Fig. 1C); therefore, posterior is
similar to likelihood, and vperceived is close to vreal.

We asked whether the model can predict the contrast
dependence of perceived speed quantitatively. We ex-
pressed its prediction in a closed form equation, which
holds when stimuli are drifting gratings. We then fitted
this equation to psychophysical measurements of per-
ceived speed.*Corresponding author.
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An earlier version of this work has appeared in
abstract form (H€uurlimann, Kiper, & Carandini, 2000).

2. Model

The Bayesian model of motion perception of Weiss,
Simoncelli and Adelson is formulated on the basis of a
simplifying assumption, that the function describing the
likelihood of different velocities is Gaussian (Simoncelli
et al., 1991). For one-dimensional motion, this Gaussian
is

LikelihoodðvÞ ¼ exp½�ðIxv� ItÞ2=ð2r2
t Þ�

where Ix and It are the derivatives of the image in space
and time, and rt is measurement noise.

For drifting sinusoidal gratings integrated over a
large enough window of space and time we can assume
this likelihood to be independent of space and time. If
we note that the physical speed of the stimulus is
vreal ¼ It=Ix we can rewrite the likelihood as a Gaussian
with mean vreal and variance rt=Ix:

Likelihood ¼ Gaussian½vreal; rt=Ix�
For a drifting sinusoid, the derivative in space of the
light intensity distribution, Ix, is proportional to stimu-
lus contrast c. We can then introduce a new constant r
and write

Likelihood ¼ Gaussian½vreal; r=c�:

Because in the Bayesian model the prior is itself a
Gaussian (Weiss & Adelson, 1998; Weiss et al., 2002)

Prior ¼ Gaussian½0; rprior�;

and the maximum of Gaussian ½m1; r1� 	 Gaussian½m2;
r2� lies at ðm1=r2

1 þ m2r2
2Þ=ð1=r2

1 þ 1=r2
2Þ we can write a

simple equation for the dependence of perceived speed
on the contrast of a drifting grating:

vperceived ¼ vreal
c2

k2 þ c2
; ð1Þ

where k ¼ r=rprior is a constant.
Eq. (1) was derived by assuming that the represen-

tation of contrast in the motion system is linear. This
assumption is likely to be wrong. For example, as con-
trast grows responses in cortical area MT of the ma-
caque show clear saturation (Sclar, Maunsell, & Lennie,
1990). This saturation is thought to be due to contrast
gain control, which lets the system operate linearly while
reducing responsiveness (Heeger, 1992; Shapley & Vic-
tor, 1978; Simoncelli & Heeger, 1998). Under this as-
sumption, one can repeat the derivation above while
modeling contrast responses as going through a com-
pressive nonlinearity such as an exponent <1. One then
obtains

vperceived ¼ vreal
cq

kq þ cq
; ð2Þ

which is more general than Eq. (1). A value q < 2 in-
dicates a compressive nonlinear representation of con-
trast.

Eqs. (1) and (2) predict a sigmoidal dependence of
perceived speed on contrast. As contrast grows, per-
ceived speed tends towards real speed. The parameter k
determines at which contrast perceived speed is half of
real speed. The exponent q determines the steepness of
the dependence of perceived speed on contrast.

To test the validity of the model, one needs to mea-
sure perceived speed. This measure can be performed
indirectly, by asking a subject to compare the speed vt of
a test stimulus with the speed vs of a standard stimulus
and finding the vt that matches vs. According to Eq. (2),
these speeds obey

vt ¼ vs
cqs

kq þ cqs

kq þ cqt
cqt

: ð3Þ

This expression has only two free parameters, k and q,
and dictates how the matching test speed vt should de-
pend on test contrast ct given a standard grating with
speed vs and contrast cs.

Fig. 1. Predictions of the Bayesian model of motion perception, sim-

plified to the case of one-dimensional motion. Dashed curves indicate

prior, which is centered on zero speed, and likelihood, which is cen-

tered on stimulus speed vreal ¼ 5 deg/s. Continuous curve is the pos-

terior, which is obtained by multiplying prior and likelihood. The

location of its peak (arrows) is perceived speed vperceived. Rows corre-

spond to different stimulus contrasts. (A) Low contrast (B) interme-

diate contrast and (C) high contrast.
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3. Methods

To test the predictions of the model we measured
matching test speed as a function of test contrast. Sub-
jects indicated the slower of two gratings drifting in the
same direction, a standard and a test (Fig. 2). We em-
ployed four standard gratings, with contrast 10% or 50%
and speed 1 or 2 deg/s. The contrast of the test grating
had one of nine values between 2% and 100%. Stimuli
were divided in four blocks, one for each standard
grating. For each of the nine conditions in each block,
test speed was determined by an adaptive psychometric
procedure (QUEST, Watson & Pelli, 1983), which aimed
for the speed yielding 50% of responses. This procedure

was given 40–50 trials to converge. We then fitted the
responses with a Weibull psychometric function (using
the maximum likelihood method, Watson, 1979). The
result of each block was a set of nine test speeds that
appeared to match the standard speed.

Stimuli were generated with the Psychophysics
Toolbox (Brainard, 1997; Pelli, 1997) and presented on a
calibrated 2100 CRT (Sony Multiscan G500, mean lu-
minance 37 cd/m2) driven by a graphics board with 159
Hz refresh rate (VillageTronic MacPicasso 850). To
minimize the effects of light adaptation, mean luminance
was kept uniform in space and time throughout the
experiment (with the exception of the fixation mark). To
minimize the effects of contrast adaptation, we ran-
domized the spatial position and direction of standard
and test, as well as test contrast. Subjects were the three
authors.

4. Results

The results of our experiment (Fig. 3) are consis-
tent with similar measurements in the literature (e.g.
Dougherty, Press, & Wandell, 1999; Hawken, Gegen-
furtner, & Tang, 1994; Muller & Greenlee, 1994; Stone
& Thompson, 1992; Thompson, 1982). When test and
standard gratings have the same contrast, they are
physically identical, so matching test speed has to be
close (within measurement error) to standard speed.

Fig. 2. Stimuli. Sinusoidal gratings (1.5 cycles/deg) were enclosed in

Gaussian windows (diameter 3 deg, duration 1 s) to the left and to the

right of a fixation mark (eccentricity 4.5 deg, binocular viewing, dis-

tance 170 cm). Arrows indicate direction of motion and speed.

Fig. 3. Dependence of matching speed on contrast, fitted with model predictions. Panels contain data from one observer and four standard gratings,

with contrast cs ¼ 10% (open symbols) and 50% (closed symbols) and speed vs ¼ 1 deg/s (triangles) and 2 deg/s (circles). Vertical dotted lines indicate

cs. Horizontal dotted lines indicate vs. Error bars are two standard errors of the mean. Scaling on all axes is logarithmic. Continuous curves are fits of

the model in Eq. (3). Dashed curves are fits obtained by fixing the exponent to q ¼ 2. (A) subject FH, k ¼ 0:1%, q ¼ 0:4, (B) subject MC, k ¼ 20:8%,

q ¼ 0:1 and (C) Subject DK, k ¼ 0:3%, q ¼ 0:3.
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When test contrast is less than standard contrast, the
test has to move faster to appear to be moving at the
same speed as the standard. At low standard contrast
(open symbols) it is possible to increase test contrast so
that the test appears to move faster than the standard
(matched test speed is below standard speed). This is
observed more rarely at high standard contrast (closed
symbols).

We fitted these measurements with the predictions of
Eq. (3), allowing the two parameters to vary across
observers, but holding them fixed across conditions.

While the fits are not perfect, the model does capture
the main features of the data (Fig. 3, continuous curves).
The model explains 85% of the variance in the data for
subject FH (Fig. 3A) and 83% of the variance in the data
for subject DK (Fig. 3C). The worst performance of the
model is with subject MC, where the model explains
only 54% of the variance in the data (Fig. 3B). This
subject was, however, the least reliable: there is high
variance in the data themselves. Overall, considering
that we are fitting 36 data points from four conditions
with only two free parameters, we take these results to
be encouraging.

The model captures the dependence of perceived
speed on contrast only if one allows for a nonlinear
internal representation of contrast. The exponent q es-
timated by the model varies from 0.1 (for MC) to 0.4
(for FH), substantially lower than the value of 2 that is
predicted if the internal representation of contrast were
linear. Indeed, if we constrain the exponent to q ¼ 2 (as
in Eq. (1)) we get unsatisfactory fits (Fig. 3, dashed
curves). The percentage of variance explained by the
model drops to 52%, 36% and 54%. These values are
low. Indeed, the fits show excessive saturation and pre-
dict that the standard should appear faster than the test
for most test contrasts.

The values of the exponent q predicted by the fits
seem qualitatively appropriate given that our contrasts
are well above detection threshold. Indeed, while near
threshold one would expect the nonlinearity to be ex-
pansive, above threshold the nonlinearity is widely
thought to be compressive (e.g. Boynton, Demb, Glo-
ver, & Heeger, 1999).

5. Discussion

We have shown that the Bayesian model of motion
perception makes quantitative predictions of the de-
pendence of perceived speed on contrast of drifting
gratings. When a more realistic representation of con-
trast is introduced these predictions are in broad
agreement with the data.

A sigmoidal dependence of perceived speed on con-
trast has been described in other studies, which have
employed expressions similar to our Eq. (2) to describe

the data (e.g. Dougherty et al., 1999; Muller & Greenlee,
1994). Our derivation of the predictions of the Bayesian
model provides the missing theoretical foundation for
such expressions.

On the other hand, a number of other studies have
demonstrated a dependence of perceived speed on con-
trast that is largely linear (e.g. Hawken et al., 1994;
Stone & Thompson, 1992; Thompson, 1982). Even our
own data would not be fitted too badly by lines. A line
differs most from a sigmoid at low contrasts and at high
contrasts. We were not able to test perceived speed at
low contrasts, because below about 3% contrast stimu-
lus detection was impaired, and subjects were not even
able to match the speeds of two identical gratings. We
were however able to measure the effects at high con-
trasts, and in our data there is evidence for saturation
(Fig. 3).

A possible explanation for the discrepancies in the
literature might lie in the spatiotemporal configuration
of the stimuli. It is possible that for some stimuli one can
measure perceived speed at very low contrasts, and find
a sigmoidal relationship between perceived speed and
contrast. For other stimuli one can only test the regime
where this relationship appears linear.

Nevertheless, as it stands the Bayesian model is un-
likely to explain the entire variety of effects described in
the literature. The reduction of perceived speed with
decreasing contrast varies from observer to observer and
depends on a number of visual attributes; at high speeds
it might be diminished or even reversed (Blakemore &
Snowden, 1999). Outside the restricted range of speeds
that we tested, the model might have been less success-
ful.

To summarize, the Bayesian model is not only able to
predict a broad range of motion perception phenomena
qualitatively (Weiss & Adelson, 1998; Weiss et al., 2002),
but can also be made quantitative and is able to predict
actual data. We have shown, however, that the model
can predict the effects of contrast on perceived speed
much better if it is extended to incorporate a nonlinear
dependence of response on contrast. In the encounter
with data, such an elegant model has to lose some of its
simplicity.
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