
Robin Ritz

Development of a Dynamical
Model for Retina-based

Control of an RC Monster
Truck

Bachelor Project

Automatic Control Laboratory
Swiss Federal Institute of Technology (ETH) Zurich

Advisors

Thomas Besselmann
Tobi Delbrück

Prof. Manfred Morari

September 11, 2008

Abstract

At the Institute of Neurinformatics (INI), a shared institute of the Uni-
versity of Zurich (UZH) and the Swiss Federal Institute of Technology
Zurich (ETHZ), a dynamic vision sensor for fast visual processing has
been developed. The dynamic vision sensor uses a silicon retina to de-
tect contrast changes in a scene. An ongoing project is to develop a
controller based on a silicon retina for a small robotic monster truck.
The goal of the project is to drive at high speed along a drawn route. In
this semester project, a dynamical model of the RC monster truck is de-
rived and a simulation environment to test retina-based control strategies
is developed. The simulation is based on Blender, a powerful open-source
modeling environment. Further, first control strategies for event-based
lateral control are implemented and tested in the simulation, as well as
on the real vehicle. At the end of this semester project, the truck is able
to follow a chalk drawn line at a little more than walking pace.

iii

Contents

Abstract iii

1 Introduction 1

2 Description of the RC Monster Truck 3

3 Modeling the RC Monster Truck 5
3.1 Assumptions . 5
3.2 Nonlinear Model . 6
3.3 Reduced Model for Controller Design 20
3.4 Parameter Identification 26

4 Simulation in Blender 28
4.1 Simulation Concept . 28
4.2 Implementation . 29
4.3 Simulation Results . 33

5 Controller Design 35
5.1 PID Control Scheme . 35
5.2 LQR Control Scheme . 37
5.3 Experimental Results . 38

6 Conclusion 39

Acknowledgement 40

List of Figures 41

Attachments 42

Bibliography 43

v

1

1 Introduction

Cars with an automatic steering system are a current area of research.
Modern cars already provide active assistance concerning steering and
drive power control and prototypes have been developed, which are able
to drive completely autonomous. Indeed, autonomous vehicles open a
field of challenges which not all have been solved completely until today.
One of these challenges, which are still a current area of research, is the
visual processing. An autonomous vehicle which can be used on common
roads must have visual sensors. Otherwise, the vehicle will not be able
to track the road. Since common cameras capture pictures on a constant
high frame rate, they cause high requirements on the memory resources.
In addition, the pictures have to be processed in real time to detect the
road and potentially to identify obstacles, what requires high processor
resources. Hence, the cost for a system with good visual processing are
high, since hardware resources are expensive. A further problem might
be that the performance of the processors is limited, even if the cost have
no importance.

A new approach to avoid these problems are event-based visual sen-
sors. The key idea of an event-based sensor is that only changes in the
measurement area are submitted. Thus, in the case of a visual sensor, if
a pixel of the picture does not change, then no information is generated
for this pixel. This approach of event based visual sensors allows fast
handling of visual data with relatively small hardware resources. In this
project, such an event-based visual sensor is used to detect the road. In
our case, the road is defined by two parallel lines or by one single line.

In addition to a reliable identification of the road, an autonomous ve-
hicle has to possess a robust control strategy, to track the road. Usually,
a control strategy is tested virtually before it is applied to the real model,
to avoid damages and to save time. But the control strategy for a vehicle
to track a road is highly coupled with the output of the visual sensor, and
therefore it is not sufficient to test the controller and the handling of the
visual data separately. For that reason, a simulation environment, based
on prior developments by Albert Cardona which allow coupled testing
of event-based visual processing and controllers (see [4]), is built during
this project to test the control performance including the visual part.

For the simulation, as well as for the controller design, a model of the
vehicle is essential and therefore a model of the RC monster truck is
established during this semester project.

In Section 2, the vehicle used during this project is described. Section 3

2

contains the modeling of the RC monster truck for the simulation, as well
as for the controller design. In Section 4, the simulation of the truck in
Blender is introduced and in Section 5, the first implemented control
schemes for lateral control of the truck are described.

3

2 Description of the RC Monster Truck

The vehicle used in this project is a remote-controlled monster truck
based on the standard model ‘Traxxas E-maxx’, which is about 0.5m
long and able to reach velocities of about 50kph. Figure 1 shows a picture
of the RC monster truck used in this project. The truck was upgraded
with a USB servo motor controller for the actuation of the steering angle
and the motor power (see A in Figure 1). The vehicle provides a three
dimensional acceleration sensor with a range of 2g (see B in Figure 1).

Figure 1: Picture of the RC monster truck used in this project. A: USB
servo controller, B: Acceleration sensor, C: Silicon retina, D:
Miniature Sony PC.

A further sensor is the silicon retina (see C in Figure 1), which is
mounted in front of the truck. The silicon retina is a dynamic vision
sensor, which allows fast visual processing. Conventional cameras are
running at a constant frame rate and capture an entire picture on each
frame. To handle each picture in real time, large processor and mem-
ory capabilities are required. The silicon retina does not capture pictures
with a constant frame rate, but records only local contrast changes. Thus,
if a pixel changes its contrast considerably, the silicon retina creates an
event. The created event contains the position of the pixel in the visual
field and the time, when the pixel has changed its contrast. Further, the
event provides the information, if the contrast of the pixel has increased

4

or decreased. These events are called spikes, so the output of the sili-
con retina are spike packages, containing information about the contrast
change of the different pixels in the visual field. The spikes of the silicon
retina are handled by jAER. jAER is a Java-based package for fast visual
processing with spikes. In this project, jAER runs on a miniature Sony
PC, which is mounted on the RC monster truck (see D in Figure 1). The
control policy and the filter, which handles the spikes to detect the road,
are implemented in jAER on the embedded PC. The embedded PC is
connected with the sensors and the USB servo motor controller through
USB cables.

5

3 Modeling the RC Monster Truck

In order to implement a realistic simulation of the vehicle dynamics and
further to design a controller for the truck, it is necessary to identify
models of different complexity. The models should include all relevant
dynamics of the RC monster truck, but at the same time there are restric-
tions on the complexity, because otherwise the calculation effort raises
too much.

3.1 Assumptions

In the following, the basic assumptions which are made for the identifi-
cation of the complex model are explained.

For the modeling, the RC monster truck is divided into a rigid body
and four wheels, which are coupled to the body by the suspensions. The
suspensions are assumed to consist of a spring, a damper and an inflexi-
ble stick, which are fixed in a particular configuration with the body and
the wheel. The detailed configuration of these three elements will be in-
troduced when we derive the suspension forces. We make the assumption
that the center of gravity of the body is the same point as the center of
gravity of the whole vehicle. Further, we assume that we can directly set
the driving torque and the steering angle without any delay.

We define a local coordinate system, which moves with the truck. The
axes of the local coordinate system are denoted with lower case letters,
while the axes of the inertial coordinate system are denoted with upper
case letters. The x-axis of the local coordinate system targets always in
forward direction of the vehicle and the z-axis, defined as the axis normal
to the ground, keeps always the direction of the inertial Z-axis. Hence,
the local coordinate system turns around the z-axis when the truck drives
through a curve. The center of the local coordinate system is the center
of gravity of the body. If the body turns around the x-axis or around the
y-axis, the local coordinate system does not follow, otherwise the z-axis
would no longer target in the direction of the inertial Z-axis. So, the
centers of the four wheels do not move in the local coordinate system.
This coordinate system is chosen because it provides the advantage that
the longitudinal velocity of the vehicle always has the same direction as
the x-axis and the lateral velocity of the vehicle always has the same
direction as the y-axis. That simplifies the derivation of the differential
equations for the longitudinal and the lateral acceleration of the truck.

For the modeling of the rotational dynamics of the body, a further
coordinate system, which is rigidly coupled with the body of the truck,

6 3.2 Nonlinear Model

is defined. The axes of this coordinate system are denoted by xb, yb

and zb and the center point is the same as the center point of the local
vehicle coordinate system. This coordinate system allows to describe the
rotational dynamics of the body in a simple way.

Thus, relative to the inertial coordinate system, the vehicle coordinate
system rotates around the Z-axis and the coordinate system rigidly cou-
pled with the body rotates around all three axes. The rotation angle of
the vehicle around the Z-axis is denoted by ϕz and the additional rota-
tion angles of the body are denoted by ϕx and ϕy. We can assume that
the angle ϕx is small and does influence the forces on the body.

Further, we assume that the silicon retina is rigidly coupled with the
body at a constant height and at constant inclination.

3.2 Nonlinear Model

For the simulation (see Section 4), a model of the truck is required that
represents the real dynamics of the vehicle as accurately as possible. For
that reason, a complex model, including the suspensions and the wheel
dynamics, is derived in this section.

Longitudinal Dynamics

The longitudinal dynamics of the truck are considered in an external
view. We assume that the forces generated by the wheels directly affect
the truck, i.e. the influence of the suspensions is neglected. This assump-
tion can be made, because the suspensions do not allow a longitudinal
departure of the wheels related to the body. The forces generated by the
wheels are denoted Fx,i, with i ∈ {1, 2, 3, 4} for each wheel. Another rel-
evant force for the longitudinal dynamics of a vehicle is the aerodynamic
drag, which is assumed to act on a constant height hair. The longitudinal
inert force Fx,t = mtotẍ acts on the center of gravity at the height hg.
Figure 2 shows a side view of the truck including all relevant forces for
the longitudinal dynamics of the vehicle. The forces of the left wheels
are not drawn, but of course they have to be considered as well. The
longitudinal position of the center of gravity is described by its distance
to the front wheels lf , respectively its distance to the rear wheels lr.

A balance of forces in longitudinal direction yields

mtotẍ = Fx,1 + Fx,2 + Fx,3 + Fx,4 − Fair, (1)

where the mass mtot includes the mass of the body and the mass of the
four wheels. The aerodynamic resistance Fair depends on the velocity of

7 3.2 Nonlinear Model

Figure 2: Side view of the RC monster truck with relevant forces.

the vehicle and according to [9], the force Fair can be written as

Fair =
1

2
caAρairẋ

2sign(ẋ), (2)

where ca denotes the aerodynamic coefficient of the truck, A stands for
the frontal area of the vehicle and ρair represents the specific weight of
air. The local coordinate system is rotating, what causes the additional
term mtotẏϕ̇z in longitudinal direction. But this term is small and thus
can be neglected.

Lateral Dynamics

For the development of the model for the lateral vehicle dynamics, we
assume again that the suspensions have no influence. Thus, the lateral
forces Fy,i, generated by the wheels, act directly on the lateral dynamics
of the truck. For this assumption, we use the simplification that the
suspensions do not let the wheels move in lateral direction. Aerodynamic
drag does not have to be considered for the lateral dynamics, because the
other forces dominate. Figure 3 shows a top view of the vehicle. The
distance between the front respectively the rear wheels is denoted by
bw. The angle ϕz is shown in Figure 3, even if it does not affect the
forces, to denote that the local coordinate system rotates. That causes
an additional term in the equation of motion for the lateral dynamics.

8 3.2 Nonlinear Model

Figure 3: Top view of the RC monster truck with relevant forces.

The lateral equation of motion can be determined by a balance of forces
in lateral direction. This results in

mtotÿ = Fy,1 + Fy,2 + Fy,3 + Fy,4 −mtotẋϕ̇z. (3)

For the lateral dynamics, the term mtotẋϕ̇z caused by the rotating coor-
dinate system can not be neglected, because the variables ẋ and ϕ̇z can
reach considerable values.

Vertical Dynamics

The motion in the vertical direction influences the range of vision of the
silicon retina and should therefore also be modeled. We assume that the
wheels are always in contact with the ground, i.e. the wheels do not
move in vertical direction. Thus, only the vertical motion of the body
has to be modeled. Figure 4 shows a side view of the body. Again,
the forces of the left wheels and suspensions are not drawn, to keep the
figure well arranged. As mentioned before, the center of gravity of the
body is assumed to be at the same point as the center of gravity of
the whole vehicle. The vertical forces Fz,i from the wheels are assumed
to be independent of the suspensions and the point of application of
these forces can be seen in Figure 4. The influence of the suspensions is
modeled by the forces Fz,sus,i, which act on the height hsus and on the
same longitudinal position as the vertical forces Fz,i from the wheels.

Neglecting the influence of ϕx and ϕy, we can determine the vertical

9 3.2 Nonlinear Model

Figure 4: Side view of the body of the RC monster truck with relevant
forces.

equation of motion using a balance of forces. We get

mbodyz̈ =
4∑

i=1

Fz,i +
4∑

i=1

Fz,sus,i − Fg (4)

for the dynamics of the body in vertical direction with Fg = mbodyg. The
motion in vertical direction has no big influence on the whole vehicle
model and that is why the influence of the angles ϕx and ϕy is neglected
here to avoid a too complex model.

Rotational Dynamics related to the xb-Axis

The rotation of the wheels around the xb-axis has not to be considered,
because we make the assumption, that the wheels are always in contact
with the ground. So, we just have to find dynamic equations for the
rotation of the body. In Figure 5, we can see a back view of the body,
where the forces of the front wheels are not drawn. The width of the
body is denoted by btop on the top, and by bbot on the bottom. The
suspensions cause forces in the lateral direction (Fy,sus,i), as well as in
the vertical direction (Fz,sus,i).

The rotation of the body around the xb-axis is influenced by the forces
Fx,i, Fy,i, Fz,i, Fy,sus,i and Fz,sus,i. Thus, the angular acceleration around
the xb-axis can be written as

Jxϕ̈x = MFx,ϕx + MFy ,ϕx + MFy,sus,ϕx + MFz ,ϕx + MFz,sus,ϕx . (5)

10 3.2 Nonlinear Model

Figure 5: Back view of the body of the RC monster truck with the rele-
vant forces.

The torques in Equation (5) can be evaluated by balances of moments
according to Figure 5. We get

MFx,ϕx = sin (ϕy)
(

bbot

2
(Fx,1 − Fx,2 + Fx,3 − Fx,4)

)
,

MFy ,ϕx = hg(Fy,1 + Fy,2 + Fy,3 + Fy,4),

MFy,sus,ϕx = −(hsus − hsp)(Fy,sus,1 + Fy,sus,2 + Fy,sus,3 + Fy,sus,4),

MFz ,ϕx = cos (ϕy)
(

bbot

2
(Fz,1 − Fz,2 + Fz,3 − Fz,4)

)
,

MFz,sus,ϕx = cos (ϕy)
(

btop

2
(Fz,sus,1 − Fz,sus,2 + Fz,sus,3 − Fz,sus,4)

)
.

(6)
The influence of ϕx on the forces can be neglected, because the angle

is assumed to be small.

Rotational Dynamics related to the yb-Axis

The angular acceleration of the body around the yb-axis is influenced by
the forces Fx,i, Fz,i, Fz,sus,i and Fair (see Figure 4). As above, we can
write the angular acceleration as a sum of moments. This results in

Jyϕ̈y = MFx,ϕy + MFz ,ϕy + MFz,sus,ϕy + MFair,ϕy . (7)

11 3.2 Nonlinear Model

The calculation of the torques is not trivial, because the lever arms of the
forces depend on the angle ϕy. For the calculation of the torque MFx,ϕy ,
we define hx,12 as the lever arm of the forces Fx,1 and Fx,2, respectively
hx,34 as the lever arm of the forces Fx,3 and Fx,4. Using these definitions,
the moment MFx,ϕy can be written as

MFx,ϕy = hx,12(Fx,1 + Fx,2) + hx,34(Fx,3 + Fx,4), (8)

where hx,12 = fhx,12(ϕy) and hx,34 = fhx,34(ϕy) are functions of the angle
ϕy. Through geometrical considerations, the functions fhx,12(ϕy) and
fhx,34(ϕy) can be established. The square of the maximum lever arm of
the forces Fx,1 and Fx,2 is l2f + h2

g (see Figure 4) and for ϕy = 0 the

angular displacement of the lever arm is equal to arctan (hg

lf
). Thus, the

lever arm for the forces Fx,1 and Fx,2 can be written as

hx,12 = cos

(
arctan

(
hg

lf

)
+ ϕy

)√
l2f + h2

g. (9)

Using the same considerations, it can be shown that the lever arm of the
forces Fx,3 and Fx,4 is given by

hx,34 = cos

(
arctan

(
hg

lr

)
− ϕy

)√
l2r + h2

g. (10)

For the calculation of the lever arms for the forces Fz,i and Fs,sus,i, we
assume that the angular displacement of the maximum lever arm is zero
and that the maximum lever arm is lr respectively lf . This assumption
can be made, because the height of the center of gravity hg is small,
relative to the length of the body lr + lf . Hence, the torque MFz ,ϕy is
given by

MFz ,ϕy = cos (ϕy)
(
lr(Fz,3 + Fz,4)− lf (Fz,1 + Fz,2)

)
(11)

and the torque MFz,sus,ϕy can be written as

MFz,sus,ϕy = cos (ϕy)
(
lr(Fz,sus,3 + Fz,sus,4)− lf (Fz,sus,1 + Fz,sus,2)

)
. (12)

The last moment to derive for the angular acceleration around the yb-axis
is MFair,ϕy , which can be written as

MFair,ϕy = hFair
Fair, (13)

where the lever arm hFair
= fhFair

(ϕy) also depends on the angle ϕy and
can be calculated in the same way as the lever arms hx,12 and hx,34 before.
This yields in

hFair
= cos

(
arctan

(
hair − hg

lf

)
− ϕy

)√
l2f + (hair − hg)2. (14)

12 3.2 Nonlinear Model

Rotational Dynamics related to the z-Axis

The part of the model for the rotational dynamics around the z-axis has
to include the entire vehicle, because not only the body rotates in this
direction, but also the wheels. Therefore, we consider an external view
on the vehicle while we establish the following equations. According to
Figure 3, the balance of moments yields in

Jzϕ̈z = MFx,ϕz + MFy ,ϕz . (15)

In this case, the lever arms are constant and the torque caused by the
longitudinal forces Fx,i is given by

MFx,ϕz =
bw

2
(−Fx,1 + Fx,2 − Fx,3 + Fx,4). (16)

Further, the torque due to the lateral forces Fy,i can be written as

MFy ,ϕz = lf (Fy,1 + Fy,2)− lr(Fy,3 + Fy,4). (17)

Wheel Dynamics

The rotational speed of the wheels highly influences the tire forces and
that is why the wheel dynamics need to be modeled for a good simulation.
Figure 6 shows a wheel from the side. Fr,i denotes the rolling friction
and has no influence on the rotational speed ω̇i, because its point of
application is the center of the wheel. The radius R of the wheel is not
constant because of elastic deformation. The relevant radius for the lever
arm of the longitudinal tire force Fl,i is denoted by Reff .

The only forces, which have influence on the rotational speed of the
wheels, are the tire force Fl,i in direction of the related wheel and the
driving power force. The driving power is modeled as a torque Mw,i,
which acts directly on the wheel. Hence, the differential equation for the
angular wheel acceleration is

Jwω̇i = Mw,i −ReffFl,i. (18)

Suspension Forces

The dynamic equations contain the suspension forces Fy,sus,i and Fz,sus,i,
so they have to be derived. The suspensions are modeled as an inelastic
stick and a spring-damper element. Figure 8 shows the configuration
of the suspension, the body and a wheel. The stick couples the related

13 3.2 Nonlinear Model

Figure 6: Side view of a wheel.

wheel with the body and the spring-damper element is mounted between
the stick and the body. The elements are connected using swivel joints.
The variables a and b in Figure 8 are auxiliary constants, which stand
for the lateral difference between the top edge and the bottom edge of
the body (a) and for the tilted height of the body (b).

The suspensions do not allow longitudinal departure between the wheels
and the body, hence each suspension has one degree of freedom. Thus,
the configuration of suspension i can be described by the angular dis-
placement βi of the concerning stick (see Figure 7).

The force of the spring-damper element Fsus,i, called suspension force,
is a function of its length lSD,i and the derivative of this length. The
force of the spring-damper element is given by

Fsus,i = cs(lSD,i − lSD,0) + ds
d

dt
{lSD,i}, (19)

where cs denotes the spring constant and ds stands for the damper con-
stant. Thus, we have to derive an expression for the length of the spring-
damper element lSD,i. If the configuration βi of the suspension is known,
then the length lSD,i is given, too. So, we first derive an expression for
the angle βi. Using trigonometric functions, the angle βi can be written
as

βi = arcsin
(∆hi

lsus,1 + lsus,2

)
, (20)

where ∆hi represents the vertical displacement of the point where the
stick is joined with the body. In Figure 8, we can see the the forces that

14 3.2 Nonlinear Model

Figure 7: Suspension connecting the body and a wheel.

act on the suspension stick. The variables lsus,1 and lsus,2 define where
the spring-damper element is connected to the stick.

The vertical displacement ∆hi of the joining point is a function of the
variables z, ϕx and ϕy. The influence of the vertical displacement z of
the center of gravity is linear, but the influence of the angles ϕx and ϕy

is more complex. Since the angle ϕx is assumed to be small, we neglect
its influence on ∆hi for simplification reasons. The influence of the angle
ϕy is given by −lf sin ϕy for the front wheels and by lr sin ϕy for the rear
wheels. Hence, the vertical displacement ∆hi of the joining point can be
written as

∆hi = z − lf sin ϕy for i = 1, 2,

∆hi = z + lr sin ϕy for i = 3, 4.

(21)

Using Equation (20), we are now able to determine the angle βi and this
allows us to calculate the angle between the side of the body and the
stick of the suspension. We denote this angle by αi (see Figure 7) and

15 3.2 Nonlinear Model

Figure 8: Forces on the stick of the suspension.

its value is given by

αi = βi + ϕx + arctan
(

hsus

a

)
for i = 1, 3,

αi = βi − ϕx + arctan
(

hsus

a

)
for i = 2, 4,

(22)

where a is the auxiliary constant described above. The distance a can
be written as

a =
btop − bbot

2
. (23)

Using the law of cosine, we can finally calculate the length of the spring-
damper element lSD,i, what yields

lSD,i =
√

l2sus,1 + b2 − 2lsus,1b cos αi, (24)

where the tilted height b is given by

b =
√

h2
sus + a2. (25)

The program Mathematica was used, to calculate the derivative of the
length lSD,i. According to Mathematica, the derivative of the length lSD,i

of the spring-damper element is given by

d
dt
{lSD,i} = lsus,1d sin αi√

l2sus,1+d2−2lsus,1d cos αi
(β̇i + ϕ̇x) for i = 1, 3,

d
dt
{lSD,i} = lsus,1d sin αi√

l2sus,1+d2−2lsus,1d cos αi
(β̇i − ϕ̇x) for i = 2, 4.

(26)

16 3.2 Nonlinear Model

So, now we are able to determine the absolute force of the spring-damper
element Fsus,i, but we need also the components Fy,sus,i and Fz,sus,i.
Therefore, the direction of the suspension force Fsus,i has to be estab-
lished. The angle between the normal direction of the ground and the
spring-damper element defines the direction of the force Fsus,i and we call
this angle γi (see Figure 7). To determine the angle γi, the law of sines
can be used. We get

γi = arctan
(hsus

c

)
+ arcsin

(lsus,1

lSD,i

sin αi

)
− π

2
. (27)

Based on the expressions which were derived above, we are now able
to determine the components Fy,sus,i and Fz,sus,i of the suspension force
Fsus,i. The lateral component Fy,sus,i is given by

Fy,sus,i = Fsus,i sin γi for i = 1, 3,

Fy,sus,i = −Fsus,i sin γi for i = 2, 4,

(28)

and the vertical component Fz,sus,i can be written as

Fz,sus,i = −Fsus,i cos γi. (29)

Tire Forces

The local coordinate system of a wheel is distorted by the related steering
angle δi from the vehicle coordinate system. Figure 9 shows the top view
of a wheel. The forces Fx,i and Fy,i relative to the vehicle coordinate
system are given by the forces Fl,i, Fc,i and Fr,i in the local coordinate
system of the wheel and the steering angle δi.

To determine the tire forces, the velocities of the wheels relative to the
ground in their local coordinate system are required. For the calculation
of the relative velocities of the wheels, it is necessary to know the dis-
tances between the center the body and the center of the wheels, because
the rotation of the vehicle around its center of gravity influences the rel-
ative velocities of the wheels. These distances are denoted by ef for the
front wheels and by er for the rear wheels. According to the theorem of
Pythagoras, the distances are given by

ef =

√
b2
w

4
+ l2f (30)

17 3.2 Nonlinear Model

Figure 9: Top view of a wheel.

for the front wheels and

er =

√
b2
w

4
+ l2r (31)

for the rear wheels. Furthermore, the angle between the x-Axis and the
line, connecting the center of gravity of the body and the center of the
wheel, is required. This angle is denoted by γw,f respectively γw,r and
can be determined using trigonometric functions. This results in

γw,f = arctan
(bw

2lf

)
(32)

for the front wheels and

γw,r = arctan
(bw

2lr

)
(33)

for the rear wheels. Thus, the velocities of the wheels relative to the

18 3.2 Nonlinear Model

ground in the vehicle coordinate system are given by

vx,1 = ẋ− ef ϕ̇z sin γw,f ,

vx,2 = ẋ + ef ϕ̇z sin γw,f ,

vx,3 = ẋ− erϕ̇z sin γw,r,

vx,4 = ẋ + erϕ̇z sin γw,r,

(34)

in the forward direction, i.e. in the direction of the x-axis. Further, we
get

vy,1 = ẏ + ef ϕ̇z cos γw,f ,

vy,2 = ẏ + ef ϕ̇z cos γw,f ,

vy,3 = ẏ − erϕ̇z cos γw,r,

vy,4 = ẏ − erϕ̇z cos γw,r,

(35)

for the lateral direction. Considering the steering angles δi and using
the Equations (34) and (35), the velocities of the wheels relative to the
ground in their local coordinate system become

Vx,1 = cos δ1(ẋ− ef ϕ̇z sin γw,f) + sin δ1(ẏ + ef ϕ̇z cos γw,f),

Vx,2 = cos δ2(ẋ + ef ϕ̇z sin γw,f) + sin δ2(ẏ + ef ϕ̇z cos γw,f),

Vx,3 = cos δ3(ẋ− erϕ̇z sin γw,r) + sin δ3(ẏ − erϕ̇z cos γw,r),

Vx,4 = cos δ4(ẋ + erϕ̇z sin γw,r) + sin δ4(ẏ − erϕ̇z cos γw,r),

(36)

in the longitudinal direction and

Vy,1 = − sin δ1(ẋ− ef ϕ̇z sin γw,f) + cos δ1(ẏ + ef ϕ̇z cos γw,f),

Vy,2 = − sin δ2(ẋ + ef ϕ̇z sin γw,f) + cos δ2(ẏ + ef ϕ̇z cos γw,f),

Vy,3 = − sin δ3(ẋ− erϕ̇z sin γw,r) + cos δ3(ẏ − erϕ̇z cos γw,r),

Vy,4 = − sin δ4(ẋ + erϕ̇z sin γw,r) + cos δ4(ẏ − erϕ̇z cos γw,r),

(37)

19 3.2 Nonlinear Model

in the lateral direction. The cornering forces Fc,i are the forces generated
by the wheels in the local lateral direction, i.e. in the direction of the
velocity Vy,i. The slip angles of the tires are assumed to be small, because
then the cornering force Fc,i of each wheel is proportional to the slip
angle. In this case, according to [9], the cornering force Fc,i of a tire can
be written as

Fc,i = Cα

(
δi −

Vy,i

Vx,i

)
, (38)

where Cα represents the constant cornering stiffness of the tire. The
longitudinal slip ratio is also assumed to be small, hence the longitudinal
tire force Fl,i is proportional to the slip ratio and can, according to [9],
be written as

Fl,i = Cσ

(Reffωi − Vx,i

Reffωi

)
(39)

during acceleration and

Fl,i = Cσ

(Reffωi − Vx,i

Vx,i

)
(40)

during braking. The constant Cσ stands for the longitudinal tire stiffness.
The elasticity of the tires causes the rolling friction force Fr,i, which can
be calculated by

Fr,i = CrFn,isign(Vx,i), (41)

as shown in [9]. The rolling friction force Fr,i has to be subtracted from
the longitudinal tire force Fl,i. The forces generated by the tire in the ve-
hicle coordinate system, denoted by Fx,i and Fy,i, have now been derived
and are given by

Fx,i = (Fl,i − Fr,i) cos δi − Fc,i sin δi (42)

and
Fy,i = (Fl,i − Fr,i) sin δi + Fc,i cos δi. (43)

Normal Forces

For the calculation of the normal forces on the tires, we neglect the
influence of the angles ϕx and ϕy. Using this assumption, the normal
forces can be written as

Fn,i =
lr

2(lf + lr)
mtotg + Fdyn,i (44)

20 3.3 Reduced Model for Controller Design

for the front wheels and

Fn,i =
lf

2(lf + lr)
mtotg + Fdyn,i (45)

for the rear wheels. The dynamic terms Fdyn,i are caused by the longitu-
dinal acceleration ẍ, the lateral acceleration ÿ and the aerodynamic drag
Fair. The forces Fdyn,i can be established with balances of moments on
the vehicle x-axis and on the vehicle y-axis. This yields in

Fdyn,1 = −Fairhair+mtotẍ
2(lf+lr)

− mtotÿ
2bw

,

Fdyn,2 = −Fairhair+mtotẍ
2(lf+lr)

+ mtotÿ
2bw

,

Fdyn,3 = Fairhair+mtotẍ
2(lf+lr)

− mtotÿ
2bw

,

Fdyn,4 = Fairhair+mtotẍ
2(lf+lr)

+ mtotÿ
2bw

.

(46)

The constant bw stands for the width of the vehicle, i.e. for the distance
between the center of two opposite wheels (see figure 3). To get the nor-
mal forces Fz,i on the body, the weight of the wheels has to be subtracted
from the normal forces Fn,i on the tires. Thus, we get

Fz,i = Fn,i −mwg. (47)

Silicon Retina

Even if the silicon retina does not influence the dynamics of the truck,
it is important to know its position and orientation to place it correctly
in the virtual model. The silicon retina is rigidly coupled with the body
of the truck at a constant height hsr. The orientation has an angular
displacement of ϕsr to the xb-axis, while using yb as the rotating axis.

3.3 Reduced Model for Controller Design

To get a realistic simulation in Blender, it was necessary to model all
states which influence the view of the silicon retina considerably. But for
controller design, a model consisting of less dynamic states is advanta-
geous. Therefore, the complex model of the truck has to be simplified.

21 3.3 Reduced Model for Controller Design

Reduced Longitudinal Dynamics

According to Equation (1), the longitudinal dynamics of the vehicle are

mtotẍ = Fx,1 + Fx,2 + Fx,3 + Fx,4 − Fair. (48)

Fair is the aerodynamic drag and can be calculated using Equation (2).
The variables Fx,i are the forces generated by the wheels in x-direction
of the vehicle coordinate system. As derived before, they can be written
as

Fx,i = (Fl,i − Fr,i) cos δi − Fc,i sin δi, (49)

where Fl,i and Fc,i represent the tire forces and Fr,i is the rolling friction
of the wheel i (see Equation (42)). δi stands for the steering angle of the
relating wheel. Now, we make the assumption that we can set Fl,i for
each wheel, thus the torque on the wheel as input variable is replaced by
the longitudinal tire force Fl,i. Using this assumption, we no longer have
to model the rotational speed ωi of the wheels and that reduces the order
of the dynamic model. The cornering force of the wheels Fc,i is given by

Fc,i = Cα

(
δi −

Vy,i

Vx,i

)
, (50)

what has been established before. Vx,i and Vy,i are the absolute velocities
of the wheels in their local coordinate system. Using Equations (36)
and (37) and neglecting that the wheels are not on the longitudinal axis
of the vehicle, we can simplify the expressions for the wheel velocities
Vx,i and Vy,i. We get the terms

Vx,i = ẋ cos δi + (ẏ + lf ϕ̇z) sin δi for i = 1, 2,

Vx,i = ẋ cos δi + (ẏ − lrϕ̇z) sin δi for i = 3, 4,

(51)

and

Vy,i = −ẋ sin δi + (ẏ + lf ϕ̇z) cos δi for i = 1, 2,

Vy,i = −ẋ sin δi + (ẏ − lrϕ̇z) cos δi for i = 3, 4,

(52)

for the wheel velocities in the local coordinate system. Thus, we can
write the cornering forces Fc,i as

Fc,i = Cα

(
δi − −ẋ sin δi+(ẏ+lf ϕ̇z) cos δi

ẋ cos δi+(ẏ+lf ϕ̇z) sin δi

)
for i = 1, 2,

Fc,i = Cα

(
δi − −ẋ sin δi+(ẏ−lrϕ̇z) cos δi

ẋ cos δi+(ẏ−lrϕ̇z) sin δi

)
for i = 3, 4.

(53)

22 3.3 Reduced Model for Controller Design

Now, we have established all equations of the reduced longitudinal vehicle
model. We can rewrite the differential Equation (48) using Equation (49)
and get the reduced longitudinal system dynamics:

d

dt

{
x
ẋ

}
=

{
ẋ

1
mtot

[∑4
i=1

(
(Fl,i − Fr,i) cos δi − Fc,i sin δi

)
− Fair

]}
. (54)

Reduced Lateral Dynamics

According to Equation (3), the lateral acceleration can be described by

mtotÿ = Fy,1 + Fy,2 + Fy,3 + Fy,4 −mtotẋϕ̇z. (55)

The forces in y-direction of the vehicle coordinate system Fy,i are given
by Equation (43):

Fy,i = (Fl,i − Fr,i) sin δi + Fc,i cos δi. (56)

The equations for the forces Fl,i and Fc,i relative to the wheels have
already been established for the reduced model in this section. Thus,
we can directly write the differential equations for the reduced lateral
dynamics as:

d

dt

{
y
ẏ

}
=

{
ẏ

1
mtot

[∑4
i=1

(
(Fl,i − Fr,i) sin δi + Fc,i cos δi

)]
− ẋϕ̇z

}
. (57)

Reduced Rotational Dynamics

The only rotation we consider in the reduced model, is the rotation
around the z-axis. As derived before, the angular acceleration is

Jzϕ̈z = MFx,ϕz + MFy ,ϕz , (58)

where the torque MFx,ϕz is given by

MFx,ϕz =
bw

2
(−Fx,1 + Fx,2 − Fx,3 + Fx,4) (59)

and the torque MFy ,ϕz can be written as

MFy ,ϕz = lf (Fy,1 + Fy,2)− lr(Fy,3 + Fy,4). (60)

To reduce the complexity of the model, we assume that the forces MFx,ϕz

cause no torque on the vehicle, i.e. MFx,ϕz is not considered for the

23 3.3 Reduced Model for Controller Design

reduced model. This assumption can be made, because the truck used
for this project provides no possibility to control each wheel particular.
We assume that the truck is front driven and that the drive force of the
left front wheel is always equal to the drive force of the right front wheel.
The truck we use in this project is four wheel driven, but for the reduced
model we can make the assumption that it is front driven. Thus, we
avoid two additional forces and keep the model as simple as possible.
Further, we consider that the steering angle of the rear wheels always
equals zero in our model, i.e. the we can write Fy,i = Fc,i for i = 3, 4.
Using these assumptions and Equation (56) for the lateral forces Fy,i, the
angular differential equations for the reduced model can be written as:

d

dt

{
ϕz

ϕ̇z

}
=

{
ϕ̇z

1
Jz

[
lf

∑2
i=1

(
(Fl,i − Fr,i) sin δi + Fc,i cos δi

)
− lr

(
Fc,3 + Fc,4

)]}
.

(61)

Combined Reduced Dynamics

To combine the reduced system equations, we define the state vector

x = [x, ẋ, y, ẏ, ϕz, ϕ̇z]
T . (62)

The goal is to get a differential equation for the system dynamics of the
form

ẋ = f(x,u), (63)

where u represents the input vector. The input vector contains the longi-
tudinal wheel forces Fl,i and the steering angles δi. As mentioned before,
we assume that the vehicle is front driven and steered by the front wheels.
This means that the longitudinal wheel forces and the steering angles for
the rear wheels are always zero. Thus, the input vector can be written
as

u = [δf , Fl,f], (64)

where δ1 = δ2 = δf and Fl,1 = Fl,2 = Fl,f . Combining Equation (54),
Equation (57) and Equation (61), the entire reduced system can be de-

24 3.3 Reduced Model for Controller Design

rived. Thus, the reduced system dynamics are:

d

dt

x
ẋ
y
ẏ
ϕz

ϕ̇z

=

ẋ
1

mtot

[∑4
i=1

(
(Fl,i − Fr,i) cos δi − Fc,i sin δi

)
− Fair

]
ẏ

1
mtot

[∑4
i=1

(
(Fl,i − Fr,i) sin δi + Fc,i cos δi

)]
− ẋϕ̇z

ϕ̇z

1
Jz

[
lf

∑2
i=1

(
(Fl,i − Fr,i) sin δi + Fc,i cos δi

)
− lr

(
Fc,3 + Fc,4

)]

.

(65)

Linearization of the Vehicle Dynamics

To create a simple controller to track a line with the truck, a linear state
space model of the truck is required. This can be achieved by linearizing
the system equations of the form ẋ = f(x,u), to get equations of the
form

ẋ = Ax + Bu. (66)

Hence, we have to linearize each column of the function f(x,u) for each
state. This can be done by using Mathematica to solve the complex
derivatives. As mentioned before, the state vector is given by

x = [y, ẋ, y, ẏ, ϕz, ϕ̇z]
T (67)

and the linearization point is chosen as

x0 = [0, ẋ0, 0, 0, 0, 0]T ,

u0 = [0, Fl,f,0]
T ,

(68)

where ẋ0 is the steady state velocity for u = u0. For the linearization,
we assume static normal force distribution. Thus, the normal forces on
the wheels are

Fn,f = lr
2(lf+lr)

mtotg,

Fn,r =
lf

2(lf+lr)
mtotg,

(69)

25 3.3 Reduced Model for Controller Design

depending if the wheel is a front or a rear wheel. Calculating the lin-
earization yields the system matrices A and B:

A =

0 1 0 0 0 0

0 − caAρairẋ0

mtot
0 0 0 0

0 0 0 1 0 0

0 0 0 − 4Cα

mtotẋ0
0 2Cα

mtotẋ0
(lr − lf)− ẋ0

0 0 0 0 0 1

0 0 0 2Cα

Jz ẋ0
(lr − lf) 0 − 2Cα

Jz ẋ0
(l2r + l2f)

,

B =

0 0

0 2
mtot

0 0

2Fl,f,0−2CrFn,f+4Cα

mtot
0

0 0

2lf (Fl,f,0−CrFn,f+2Cα)

Jz
0

.

(70)

Linearized Lateral Dynamics

Regarding the system matrix A in Equation (70), we can see that in the
linear system the lateral dynamics are not coupled with the longitudinal
dynamics. Thus, the longitudinal dynamics do not have to be considered
for lateral controller design. The state vector can be reduced to

x = [y, ẏ, ϕz, ϕ̇z]
T (71)

26 3.4 Parameter Identification

and the system matrix A becomes

A =

0 1 0 0

0 − 4Cα

mtotẋ0
0 2Cα

mtotẋ0
(lr − lf)− ẋ0

0 0 0 1

0 2Cα

Jz ẋ0
(lr − lf) 0 − 2Cα

Jz ẋ0
(l2r + l2f)

. (72)

Further, we can see that the longitudinal wheel forces of the front wheels
Fl,f have no influence on the lateral system dynamics, thus the input
vector can be reduced to

u = δf . (73)

Under that condition, the input matrix B becomes

B =

0

2Fl,f,0−2CrFn,f+4Cα

mtot

0

2lf (Fl,f,0−CrFn,f+2Cα)

Jz

. (74)

3.4 Parameter Identification

To identify the parameters of the model, the acceleration sensor was
used. Therefore, a Matlab-function which simulates the complex model
of the truck in Simulink was written. The function returns the difference
between the simulated acceleration values and the real acceleration mea-
surements, while we feed the same input values to the simulation as we
used during the acceleration measurements on the real truck. To find the
optimal set of parameters, the Matlab-function is minimized numerically
by adjusting the parameters of the model in the simulation. In Figure 10,
we can see a comparison between measured and simulated acceleration
values, after the parameters of the model have been optimized.

Figure 10 shows that the acceleration measurements have a substantial
variation of about 2g when the car is driving, what reduces the accuracy
of the parameter identification. A further drawback is that we have to
identify a lot of parameters only with the acceleration measurements.

27 3.4 Parameter Identification

Figure 10: Measured acceleration (green line) and simulated acceleration
(blue line) for a particular set of input values.

For that reason, some parameters have to be estimated and can hardly
be verified using the acceleration sensor.

Furthermore, it has to be considered that some parameters of the truck
are not constant, e.g. the drive torque depends on the battery power and
the tire forces depend on the ground, on which the truck is driving.

On the attached CD, a list of the parameters and their measured,
estimated or identified values can e found.

28

4 Simulation in Blender

In order to test a particular controller for the RC monster truck, a virtual
three dimensional environment is employed, which allows to simulate the
silicon retina. Therefore, a virtual model of the vehicle with nearly the
same dynamics as the original has to be created. Blender, an open-source
program for three dimensional modeling, was chosen as our test environ-
ment. Blender provides the possibility to integrate Python scripts, which
allow to implement the complex dynamics of the truck.

4.1 Simulation Concept

The dynamics of the vehicle in the simulation should approximate the
real behavior of the truck as good as possible, to get a realistic test
environment. In Section 3, a complex model of the vehicle was derived.
This model contains the relevant dynamics which influence the field of
view of the silicon retina. Thus, if we are able to run the simulation based
on this model, we have the possibility to test a particular controller for
the truck including the visual part.

For a useful test of control strategies, it is not adequate to simulate
only realistic dynamics, but it is also necessary to react accurately on
the inputs and to create practical outputs. In our case, the inputs are
the steering angle and the drive torques of the wheels. The influence of
these inputs was also modeled in Section 3. The output of the simulation
are the spikes recorded by the silicon retina in front of the vehicle. The
spikes are sent to the jAER interface, which includes the visual filter and
the controller (see Section 2). In Figure 11, the interaction between the
simulation and the jAER interface is visualized.

Figure 11: Schematic visualization of the interaction between the simu-
lation in Blender and the Java-based jAER package.

29 4.2 Implementation

4.2 Implementation

The dynamics of the vehicle are not linear and their calculation is nu-
merically expensive. But the frequency of the calculation of the dynamic
variables of the model should be as high as possible, so that the quality
of the visual output is not affected by studdering. For that reason, we
create a state mesh and linearize the complex model at each point of
the mesh. Therefore, a Matlab script has been created, which allows to
linearize a Simulink model at each point of the user defined state mesh.
This provides also the advantage that it is not needed to change the
Python code in the Blender file, when we want to change the model of
the truck. It is only necessary to modify the Simulink model and, after
executing the Matlab script, the simulation in Blender is adjusted to the
changes. The Matlab script builds a text file for each linearization point
and a folder containing the information about the used state mesh. Each
text file comprehends the relating matrices A and B, which describe the
concerning linear system. The folder for the state mesh contains a text
file for each state with information about the resolution and the range of
the related state. All text files are labeled in a defined format, so that
the Python scripts can access the files without manual modifications.
Figure 12 visualizes the handling of the linearized models.

The dynamics, which are simulated and visualized using the strategy
described above, are the motions in all three directions, the rotations
around all axes and the rotations of the wheels, everything relative to
the local coordinate system of the vehicle. The simulation in Blender
is based on eight separate Python scripts, which are explained in the
following.

Python Script ‘Initialize’

This Python script sets up the simulation environment and initializes the
global variables. Global variables are the current values of the dynamic
states and their current derivatives, the resolution and the range of the
state mesh, and some other factors and pointers which are necessary
for the simulation. The resolution and the range of the state mesh are
calculated using the text files created by the Matlab code. This Python
script is executed once when the simulation starts.

Python Script ‘Dynamics’

The Python script for the dynamics handles the motions of the virtual
vehicle. First, the new values of the dynamic states are calculated us-

30 4.2 Implementation

Figure 12: Schematic visualization of the simulation. The Matlab script
builds the text files containing the linearized models and the
Python scripts access the text files to get the linearized model
relating to the current values oft the dynamic states.

ing an Euler discretization. The derivative of the dynamic states are
calculated at the end of this script and saved as global variables. After
that, the new values of the states are applied to the three dimensional
model. Then the inputs, i.e. the steering angle and the drive torque of
the front wheels, are updated, either according to the manual input of
the keyboard or according to the control signal coming from the exter-
nal controller. The influence of manual steering will be introduced later.
Based on the new inputs and on the current values of the dynamic states,
the script reads in the new system matrix A and the new input matrix
B. Finally, the current derivatives of the states are calculated using the
loaded matrices and saved as global variables for the next call of this
script. The script for the dynamics is executed every logic tick, and the
time between two logic ticks is set to 15ms in our simulation.

Python Script ‘Corrections’

Because the dynamics are simulated numerically and visualized in par-
allel, some states drift away, i.e. the calculated values do not correspond
with the visualization. For example the vertical position z drifts away
and some time after the start of the simulation, the truck seems to fly

31 4.2 Implementation

or to drop into the ground. For that reason, the python script for the
corrections is called once in ten game logic ticks. The script reads in the
drifting states from the three dimensional model and uses these values
to adjust the numerical simulation. Another problem is that the wheels
tend to drift away from the body of the truck during the simulation,
also because of numerical errors. The Python script for the corrections
handles this problem as well.

Python Script ‘Settings’

During the simulation, it is possible to change between manual control
and automatic control. Manual control means that the virtual vehicle is
controlled by the keyboard arrows, while automatic control denotes that
the vehicle is controlled by the external controller implemented in Java.
Thus, we need two settings, one for steering and one for speed control.
Both of these two options can be changed independently from manual to
automatic and vice versa. In the integrated command line of Blender,
the inputs from the controller are always displayed during the simulation,
even if the manual control mode is activated. So, it is possible to control
the virtual truck manually and to observe at the same time, what the
controller would do in the current situation. The Python script for the
settings is executed, whenever the user pushes one of the keys to change
the steering or the speed control mode, and handles the changing.

Python Script ‘Camera Feeder’

This script simulates the output of the silicon retina, i.e. it creates the
spikes. For that, a virtual camera is mounted in the front of the truck, at
the same place where the silicon retina is located on the original vehicle.
The view of the camera is captured and used to extract spikes. Therefore,
the current view of the virtual camera is rasterized and each element
of the raster is analyzed regarding to its brightness. If the changing
of the brightness, compared to the last execution of the script, raises
above a particular value, then a spike is created for the related element
of the raster. Figure 13 shows a screen shot of the virtual camera in
the simulation, and the associated spikes, which have been created by
the Python script. This script is based on a script published by Albert
Cardona in [4] and has been adapted for our simulation.

To send the spikes to jAER, a socket is set up, which provides the
possibility to send a continuous stream to the jAER client. Through
this stream, the spikes are transmitted to the filter and the external

32 4.2 Implementation

(a) Screen shot of the three di-
mensional simulation in Blender.

(b) Spikes which are generated at
the same time of the screen shot.

Figure 13: Comparison between a screen shot of the simulation in Blender
(a) and the related spikes, created by a Python script (b).

controller, which are implemented in Java. This script handles also the
inputs, which are transmitted through the socket stream as well, coming
from the controller. The script decodes the input stream into the desired
steering angle and the desired drive torque. Because the execution of this
script is expensive in terms of calculation steps, it is only called every
few game logic ticks, but the flow of the spikes is still sufficient.

Python Script ‘Capture Route’

To analyze the performance of a particular controller, it is advantageous
to capture the driven path. Therefore, this Python script captures a
trajectory which is driven during the simulation. The captured path,
which consists of the position and the orientation of the truck for each
game logic tick, is saved in a text file. This script is called every game
logic tick, if the route capturing is activated.

Python Script ‘Rerun Captured Route’

This script allows to rerun a trajectory, which has been recorded before.
If a captured path is driven again, then it is possible to switch between
different views, to analyze the performance of the controller. This script
is called every game logic tick, if the simulation is in the rerun mode.

33 4.3 Simulation Results

Python Script ‘Get Captured Route’

To test a controller without the influence of the filter which handles the
spikes, this Python script determines the lateral and the angular errors
relative to a reference route and feeds them to the controller. Thus,
we assume that the filter of the silicon retina always recognizes the route
perfectly. The reference route can either be captured by the Python script
‘Capture Route’, or be generated by a program, for example Matlab.

4.3 Simulation Results

Based on the implementation introduced above, a realistic simulation
of the RC monster truck can be performed, provided that we have a
good model of the truck. The simulated output of the silicon retina
looks as expected. The flow of the spikes created in Blender during the
simulation is very similar to the flow of the spikes resulting from the real
silicon retina, except that the timestamps of the events are quantized to
the simulation frame rate. Depending on the texture of the ground in
the simulation, we are able to create more or less noise in the simulated
output of the silicon retina. Hence, the simulation provides the possibility
to test a controller under idealized conditions without noise, as well as
the possibility to test a controller under conditions which are similar
to reality. Figure 14 shows a comparison between spikes which were
simulated and spikes which were recorded using the silicon retina on the
truck. In Blender, a texture with high contrast differences was chosen,
what causes noise in the virtual output of the silicon retina.

34 4.3 Simulation Results

(a) Screen shot of a recorded out-
put of the silicon retina.

(b) Screen shot of the simulated
output of the silicon retina.

Figure 14: Comparison between recorded spikes (a) and simulated spikes
(b).

It has to be mentioned that some manual adjustments in the system
matrices are necessary, after the Simulink model of the truck has been
linearized at each point of the state mesh. The reason for that is the fact
that the used Simulink model fails if the car does not move, because of
zero divisions.

On the attached CD, some videos of the simulation can be found,
including different perspectives and the output of the visual filter using
simulated spikes.

35

5 Controller Design

In this section, a controller for the lateral position of the truck is designed,
based on the reduced lateral model of the system dynamics. We assume
that the silicon retina is the only available sensor and its output is filtered
to get a measurement signal. The measurement signal contains the lateral
departure of the truck relative to the middle of the route and the angular
displacement of the vehicle relative to the direction of the route.

5.1 PID Control Scheme

The first approach we consider is to use a standard PID controller for
the lateral control of the truck.

Approach

A PID controller consists of three parts. The proportional part multiplies
the error by a constant factor, where the error is the current departure to
the setpoint value. The integral part integrates and the differential part
differentiates the error and the sum of all these parts is fed to the plant.
Figure 15 shows a schematic PID controller consisting of the proportional,
the integral and the differential part.

Figure 15: Schematic visualization of a PID controller.

To determine the range of the factors kp, ki and kd, which weight the
three parts of the PID controller, the method of Ziegler and Nichols, as
described in [7], was applied in the simulation.

36 5.1 PID Control Scheme

Implementation

A PID controller has one input and one output. The truck has one input,
which is the steering angle, and two outputs, which are the lateral and the
angular displacement of the vehicle relative to the route. Since the PID
controller can only handle one input, we combine the two outputs of the
truck to feed them to the PID controller. Therefore, the two outputs of
the truck are added after they have been weighted by constant factors.
This approach restricts the control performance because the controller
reacts in the same way on both outputs of the truck, aside from the
different weighting factors. But at the current state of the project, this
restriction does not influence the performance of the truck considerably.
Since the outputs of the vehicle do not represent absolute values of system
states, but lateral and angular errors, we can feed them directly to the
PID controller. In Figure 16, we can see a feedback system using a PID
controller. The constants K1 and K2 are the weighting factors of the
lateral and the angular error and have to be determined manually.

Figure 16: Feedback system with a PID controller.

Because we add the lateral and the angular error, we have to avoid
that they cancel themselves. But in our case, there is no steady state, in
which the errors cancel, because the lateral error changes, if the angular
error is not zero. The only situation, in which the sum of the errors
becomes zero, is if the vehicle moves towards the route from the side
on a particular angle, which depends on the weighting factors K1 and
K2. But this causes no problems, because it does not make the system
unstable and the only steady state occurs if the lateral as well as the
angular error equals zero.

37 5.2 LQR Control Scheme

5.2 LQR Control Scheme

The second approach we consider is to track the route using an LQR
controller.

Approach

An LQR controller minimizes the cost function

J(u) =

∫ ∞

0

x(t)T Qx(t) + u(t)T Ru(t)dt (75)

by choosing an adequate control signal u(t). Q is a quadratic weighting
matrix of the system states x and R penalizes the control effort. In [5],
it is shown that the cost function defined in Equation (75) is minimized
if the control signal has the form

u(t) = −Kx(t), (76)

where K is a constant matrix. According to [5], the matrix K is given
by

K = R−1BT Φ, (77)

where Φ can be determined by solving the Algebraic Ricatti Equation

ΦBR−1BT Φ− ΦA− AT Φ−Q = 0. (78)

The system matrices A and B of the lateral model of the truck were
derived in Section 3.

Implementation

Since we are not able to measure all four states of the lateral model of the
truck, we have to add an observer to the control loop, which determines
the system states based on the outputs of the truck. Figure 17 shows the
control loop using an LQR controller including the state observer.

A common approach to determine the system states is to simulate the
dynamics of the plant in the observer. But since the silicon retina is
event based, the calculation of the integrators in the simulated plant is
problematic, because the sampling rate depends on the number of spikes,
which are currently generated. Therefore, we use another approach to
determine the system states.

Since the states y and ϕz do not influence the system dynamics, we can
assume that the position and the orientation of the route always equal

38 5.3 Experimental Results

Figure 17: Feedback system with an LQR controller. The control signal
u contains only the steering angle, if just the lateral model of
the truck is used.

zero in the vehicle coordinate system, i.e. the setpoint values are always
zero. Since the output of the truck gives us the lateral and the angular
error, the output equals y respectively ϕz, if the setpoint values are zero.
Thus, we are able to determine the system states y and ϕz. To calculate
the system states ẏ and ϕ̇z, we differentiate the known system states y
and ϕz. Usually, differentiate system outputs is problematic, because the
noise of the sensors is amplified. But in our case, the output of the system
comes from the filter of the silicon retina and has been processed before,
so we are not considered with sensor noise. Further, we assume that the
route is smooth, so there are no steps in the filter output, provided that
the filter does always recognize the route correctly.

5.3 Experimental Results

On the attached CD are some videos of the experimental results in the
simulation and in reality. In all videos, the truck was steered by the
proportional part of the PID controller. In the simulation, the speed was
set to a constant value of about 7kph during line tracking and about 4kph
during lane tracking. On the real truck, the acceleration was controlled
manually and the car drove at a velocity of a little more than walking
pace.

39

6 Conclusion

The result of this semester project is a nonlinear model of the RC monster
truck and a reduced linear model for the controller design. Further, a
simulation environment in Blender has been developed, to simulate the
behavior of the truck including the silicon retina. Using this simulation
environment, control strategies to track a route with the RC monster
truck can be tested.

Two first control strategies, a PID and an LQR controller, were im-
plemented in jAER and tested in Blender as well as in reality. On the
real vehicle, some problems occurred, e.g. that the vehicle dynamics do
not only depend on the velocity, but also on the battery power, and that
there is too much noise under some terrain and light conditions, so that
the visual filter is not able to handle all the spikes. Regarding to the
controller design, it has to be considered that the sampling rate is not
constant, what complicates the handling of virtual integrators.

In the simulation in Blender under idealized conditions without noise,
both controllers provided good results, i.e. the controllers were able to
track a line at a velocity of about 7kph and a lane at a velocity of about
4kph.

On the real vehicle, the observer for the LQR controller failed because
of the inconstant sampling rate. The best results were achieved by using
just the proportional part of the PID controller. In this case, the truck
was able to follow a line at a little more than walking pace or to follow
a lane if it is pushed manually.

Future issues related to this project are to develop a method to handle
the varying sampling rate of the silicon retina robustly and to establish
good filter and control parameters, which may depend on the current
conditions. Further, considering the acceleration sensor for the controller
design and using cascaded control loops could improve the performance
of the control strategies.

Another future work is to install additional sensors for a more pre-
cisely identification of the model parameters. At the current state of the
project, the imprecise model parameters do not yet influence the per-
formance of the controller considerably, because there are other more
fundamental problems to solve. But in the future when more complex
controllers will be applied and a simulation very near to the reality is
needed, then the identification of the parameters has to be preciser.

40

Acknowledgement

I would like to thank Christian Brändli for the nice collaboration during
this project. My thanks go also to Tobi Delbrück and Thomas Bessel-
mann for the supervision and the support and to Patrick Lichtsteiner for
the construction of a new camera mount.

41 List of Figures

List of Figures

1 RC monster truck . 3
2 Side view of the RC monster truck 7
3 Top view of the RC monster truck 8
4 Side view of the body . 9
5 Back view of the body 10
6 Side view of a wheel . 13
7 Suspension . 14
8 Suspension forces . 15
9 Top view of a wheel . 17
10 Parameter identification using Matlab 27
11 Interaction between the simulation and the jAER package 28
12 Simulation using the linearized models 30
13 Simulation screen shot and associated spikes 32
14 Comparison between a recorded and a simulated output

of the silicon retina . 34
15 Schematic PID controller 35
16 Feedback system with a PID controller 36
17 Feedback system with an LQR controller 38

42 List of Figures

Attachments

The attached CD contains several digital files of this project. In addition
to the documentation of the project, there are five folders on the CD.
The content of the folders is introduced in the following.

Folder ‘jAER’

This folder contains the controller, which is called FancyDriver and im-
plemented in Java.

Folder ‘Matlab’

In this folder the Matlab-files are stored, i.e. the Simulink model of the
truck and the Matlab script to linearize the model for the simulation.

The Readme-file in this folder gives more information about the han-
dling of the Matlab scripts.

Folder ‘Presentation’

This folder contains the PowerPoint-presentation of our work and the
videos which were shown during the presentation.

Folder ‘Simulation’

This folder includes all files which are needed for the simulation. The sub-
folder ‘Blender’ contains the Blender-file for the simulation (Truck.blend)
and Blender version 2.45 for Windows, since the simulation works only in
this version. The sub-folder ‘PythonScripts’ contains the scripts, which
were written for the simulation.

For further instructions relating to the simulation, take a look at the
Readme-file, which is placed in this folder.

Folder ‘Videos’

In this folder some videos of test runs in the simulation as well as in reality
are stored. In all videos, the steering angle of the truck is controlled by
the PID controller using just the proportional part. In Blender, the
velocity of the truck is set to a constant value and in the videos of the
real truck, the acceleration is controlled manually.

43 References

References

[1] http://jaer.wiki.sourceforge.net.

[2] http://siliconretina.ini.uzh.ch.

[3] http://www.blender.org.

[4] Albert Cardona. Blender’s game engine as a 3d environment simu-
lator for external programs. blender conference, 2007.

[5] H. P. Geering. Regelungstechnik. Springer Berlin, 2001.

[6] L. Guzzella. Modeling and analysis of dynamic systems, 2005/2006.
Lecture Notes at ETH Zurich.

[7] L. Guzzella. Analysis and Synthesis of Single-Input Single-Output
Control Systems. vdf, September 2007.

[8] The MathWorks. Matlab. http://www.mathworks.com.

[9] R. Rajamani. Vehicle Dynamics and Control. Springer, 2005.

[10] Wolfram Research. Mathematica. http://www.wolfram.com.

	Abstract
	Introduction
	Description of the RC Monster Truck
	Modeling the RC Monster Truck
	Assumptions
	Nonlinear Model
	Reduced Model for Controller Design
	Parameter Identification

	Simulation in Blender
	Simulation Concept
	Implementation
	Simulation Results

	Controller Design
	PID Control Scheme
	LQR Control Scheme
	Experimental Results

	Conclusion
	Acknowledgement
	List of Figures
	Attachments
	Bibliography

