
LETTER Communicated by Terrence Sejnowski

Getting to Know Your Neighbors: Unsupervised Learning
of Topography from Real-World, Event-Based Input

Martin Boerlin
martin boerlin@bluewin.ch
Institute of Neuroinformatics, University of Zurich and ETH Zurich, CH-8057
Zurich, Switzerland, and Group for Neural Theory, Département d’Etudes
Cognitives, Ecole Normale Supérieure, Collège de France, 75005 Paris, France

Tobi Delbruck
tobi@ini.phys.ethz.ch
Kynan Eng
kynan@ini.phys.ethz.ch
Institute of Neuroinformatics, University of Zurich and ETH Zurich,
CH-8057 Zurich, Switzerland

Biological neural systems must grow their own connections and main-
tain topological relations between elements that are related to the sensory
input surface. Artificial systems have traditionally prewired such maps,
but the sensor arrangement is not always known and can be expensive to
specify before run time. Here we present a method for learning and up-
dating topographic maps in systems comprising modular, event-based el-
ements. Using an unsupervised neural spike-timing-based learning rule
combined with Hebbian learning, our algorithm uses the spatiotempo-
ral coherence of the external world to train its network. It improves on
existing algorithms by not assuming a known topography of the tar-
get map and includes a novel method for automatically detecting edge
elements. We show how, for stimuli that are small relative to the sen-
sor resolution, the temporal learning window parameters can be deter-
mined without using any user-specified constants. For stimuli that are
larger relative to the sensor resolution, we provide a parameter extraction
method that generally outperforms the small-stimulus method but re-
quires one user-specified constant. The algorithm was tested on real data
from a 64 × 64-pixel section of an event-based temporal contrast silicon
retina and a 360-tile tactile luminous floor. It learned 95.8% of the correct
neighborhood relations for the silicon retina within about 400 seconds
of real-world input from a driving scene and 98.1% correct for the sen-
sory floor after about 160 minutes of human pedestrian traffic. Residual
errors occurred in regions receiving little or ambiguous input, and the
learned topological representations were able to update automatically
in response to simulated damage. Our algorithm has applications in the

Neural Computation 21, 216–238 (2009) C© 2008 Massachusetts Institute of Technology

Getting to Know Your Neighbors 217

design of modular autonomous systems in which the interfaces between
components are learned during operation rather than at design time.

1 Introduction

Both natural and artificial systems require implicit or explicit knowledge of
the topological arrangement of their components to function correctly. This
information can be encoded or updated during either the developmental
(design) or the sensory (operational) phase of the life of the system. One
example of how such information may be encoded during development
has been found in mammalian visual systems before eye opening, where
spontaneous waves of retinal activity spread across the retinal ganglion
cell (RGC) layer of the developing retina (Galli & Maffei, 1988; Meister,
Wong, Baylor, & Shatz, 1991; Katz & Shatz, 1996; Wong, 1999) to produce
strongly correlated activity among neighboring RGCs. It is believed
that correlated activity among RGCs, and hence knowledge about the
topological arrangement of the RGCs in the retina, plays a crucial role in
topographic map formation in the visual pathway. (McLaughlin, Torborg,
Feller, & O’Leary, 2003). Several models have been proposed to explain the
formation of topographic maps and ocular dominance stripes in the visual
system (for a review, see Swindale, 1996). Many rely explicitly on Hebbian
learning rules, whether in the form of local modification rules (von der
Malsburg & Willshaw, 1976; Miller, Keller, & Stryker, 1989) or models based
on Kohonen’s competitive learning rule (Kohonen, 1982; Goodhill, 1993).
Most Hebbian learning models are accompanied by a normalization of
synaptic weights in order to keep synaptic weight growth bounded. Other
models have also been proposed, such as Elliott et al.’s neurotrophic model
of activity-dependent competitive synaptic plasticity (Elliott & Shadbolt,
1999; Elliott, Maddison, & Shadbolt, 2001).

Models of topography development describe how topology is preserved
from an array of afferent neurons (e.g., the retina) to an array of target
neurons (e.g., lateral geniculate nucleus). The topology of the target sheet,
which is assumed to be known, is used as a reference for reconstructing the
topology of the afferent sheet. Figure 1A illustrates this process for a small
system of seven afferent and seven target neurons, where each neuron in the
target sheet is best represented by its corresponding neuron in the afferent
sheet. The topology of the afferent sheet is then found by assuming that
the two afferent neurons that map onto two adjacent target neurons must
themselves be adjacent. For this approach to work, it is crucial to know the
topology of the target sheet. In real-world systems, however, such knowl-
edge is not necessarily available. It would therefore be desirable to find a
method that allows direct unsupervised topology learning of the compo-
nents of a system to overcome the limitation of prior topology information.
In addition, for real-world applications, it is important to know how to set

218 M. Boerlin, T. Delbruck, and K. Eng

Figure 1: Schematic illustration of the optimal connections from afferent to
target sheet of a small system containing seven afferent and seven target
neurons. (A) Connections to be learned for models that assume knowledge
of the topology of the target sheet. Each afferent neuron projects onto only
one target neuron. (B) Connections to be learned for our model, not assuming
any prior knowledge of sheet topologies. Each afferent neuron maps onto six
target neurons (shown for the central afferent neuron by dotted connections),
and each target neuron receives input from six afferent neurons (shown for the
central target neuron by solid connections).

or learn important parameters such as learning windows and how to deal
with edge effects.

The remainder of this letter details our algorithm for unsupervised learn-
ing of the adjacency matrix of a system with an initially unknown config-
uration of its components, without the above-mentioned assumption of a
known target topology. It is designed to deal with real-world noisy input
and adapt appropriately to changes in the topology of the system due to
damage or component redistribution. To test the algorithm, we show real
data recorded from a large, interactive tactile sensory floor (Eng et al., 2003;
Delbrück et al., 2007) and an event-based temporal contrast silicon retina
(Lichtsteiner, Posch, & Delbruck, 2006, 2008).

2 Topology Discovery Algorithm

2.1 Core Algorithm. Figure 1 graphically depicts the difference be-
tween our algorithm and previously published algorithms. As we cannot
rely on knowing the topology of the target sheet, it is not possible to use
a one-to-one neuron mapping (see Figure 1A). Instead, in our algorithm,

Getting to Know Your Neighbors 219

each neuron in the afferent sheet maps on to putative neighbor neurons
in the target sheet (typically four, six, or eight). Figure 1B schematically
visualizes this idea, showing the optimal connections originating from
the central neuron in the afferent sheet to its neighbors in the target sheet
(dotted connections) as well as the connections between the central target
neuron and the six afferent neurons representing it best (solid connections).

The algorithm is based on the idea that the temporal relationships be-
tween input stimuli to a system can reflect the underlying spatial relation-
ships among its components. This means that if two sensory components
generate input events within a time interval close to the characteristic time
the stimulus needs to move from one component to the other, then they
are likely to be neighbors. In addition, the algorithm makes the following
assumptions:

� Each component of the system is uniquely labeled.
� A salient input at any sensing element generates a unitary event,

which can be either an ON (inactive → active) or an OFF (active →
inactive) event.

� The timing of input events is known with a time resolution much
better than the rate at which the events occur.

� The number of nearest neighbors of each component is a constant,
known number.

The algorithm takes as its input the asynchronous sequence of events,
more precisely the sequence of event occurrence times and labels of the
corresponding components. We consider a weight matrix w where each
element wij represents a connection strength from component i to j . Let
w j (n) denote the weight vector of component j at time step n. The weight
matrix is initialized such that

wij(n = 0) = 1. (2.1)

When component j receives an input event at time step n, the weight
changes �w j for weight vector w j are calculated using an event-based
learning rule with contributions from spike-timing-dependent plasticity
(STDP) and Hebbian learning:

�w j (n) = �wSTDP
j (n) + �wHebb

j (n). (2.2)

Each of these contributions is explained in more detail below.

2.1.1 STDP-Like Learning. Weight changes are calculated due to the
spike time difference �t = tj − ti where tj and ti denote the times at which
components j and i received their last events, respectively. Because of the

220 M. Boerlin, T. Delbruck, and K. Eng

sequential arrival of events, �t ≥ 0 as tj is always larger than ti . Weight
changes are calculated using a gaussian function:

�wSTDP
i j (n) = 1

M
exp

{
− [�t − µi (n)]2

2σ 2
i (n)

}
, (2.3)

where M is the estimated number of components of the system (the number
of components that have already received an event). The parameter µ is the
center of the gaussian, corresponding to the characteristic time the stimulus
needs to move from a component to its neighbor, and σ is the charac-
teristic width of the gaussian. Both µ and σ are estimated according to
characteristics in the movement of the stimulus (see the following section).

2.1.2 Hebbian-Like Learning with a Soft Winner-Take-All Component. The
Hebbian-like part of the topology-discovering algorithm is not crucial for
the overall functioning of the algorithm. However, it speeds up convergence
of the weight matrix. Let N denote the currently estimated connectivity
matrix among components, with Nik referring to the label of the kth neighbor
of component i . When component j receives an event, the corresponding
weight wi j is increased by a quantity η if component j is currently listed in
N as a neighbor of component i :

�wHebb
i j (n) =

{
η if Nik(n) = j, k = 1, 2, . . . , m

0 otherwise
. (2.4)

The parameter m is the number of neighbors of a component. N is calculated
with a soft winner-take-all algorithm; that is, the components k = 1, . . . , m
of j are predicted to be those with the highest weights in wsym

j , where wsym
j

is the j th column of the symmetric matrix wsym = w + wT.
The weight update is accompanied by a normalization of the norm of

the weight to unity to keep the total length of the weight vectors
∑

i w2
i j

constant and prevent runaway growth of individual weights:

w j (n + 1) = w j (n) + �w j (n)
‖w j (n) + �w j (n)‖ . (2.5)

2.2 Sharpening Filter: Recognizing the Border. As presented so far,
the algorithm estimates m neighbors for each component. However, for
finite systems, there are border components that have less than m adjacent
components. To find these components and estimate their actual neighbors,
we apply a sharpening filter to the weight matrix w. The idea is to calculate a
new weight matrix w̃ for which we set a threshold that separates the weights

Getting to Know Your Neighbors 221

Figure 2: Visualization of weight triangles in equation 2.8. Triangle i– j–k links
neighboring components, whereas triangle i– j ′–k ′ links i to its second-order
neighbors j ′ and k ′ (j ′ and k ′ being neighbors). We suppose that wi j > wi j ′ and
wik > wik′ , implying that vk j > vk′ j ′ .

of directly adjacent components from those of higher-order neighbors that
are farther away.

Due to the asymmetric weight updates of equations 2.3 and 2.4, w is
an asymmetric matrix that has to be transformed into a symmetric one for
consistency of bidirectional connections:

wsym = w + wT. (2.6)

Then each column of wsym is modified such that its highest entry is unity:

wrel
j = 1

maxi w
sym
i j

w
sym
j . (2.7)

We now calculate the new connection weight w̃i j between component j and
i . For connection i ←→ j , we define a vector v j whose kth component is
given by a weighted sum:

vk j = awrel
i j + wrel

k j + wrel
ki , (2.8)

where a is a weighting factor used to potentiate or depress the previ-
ously estimated connection strength between components j and i . For
reasons of computational efficiency, equation 2.8 is processed only for the
highest weights wi j and wk j . Figure 2 visualizes two weight triangles of
equation 2.8. Triangle i– j–k links the three directly adjacent components
i , j , and k, whereas triangle i– j ′–k ′ links component i to its second-order

222 M. Boerlin, T. Delbruck, and K. Eng

neighbors j ′ and k ′, with j ′–k ′ being direct neighbors. The underlying idea
of the sharpening procedure is that the sum of the weights in triangle i– j–k
will be higher than the sum of the weights in triangle i– j ′–k ′ because direct
neighbors should have higher connection strengths among each other than
with higher-order neighbors. In other words, it is likely that wi j > wi j ′

and wik > wik ′ implying that vk j > vk ′ j ′ and hence component j is the
most likely neighbor of component i . Averaging over many such weight
triangles should consequently increase the weights of actual adjacent
components relative to the weights of nonadjacent ones, thus sharpening
the weight matrix. After sorting vector v j , we calculate w̃i j as

w̃i j = 2
m

m
2∑

k=1

v∗
k j , (2.9)

where m is the maximum number of neighbors and v∗
j is the sorted vector

v j such that v∗
k j ≥ v∗

(k+1) j∀k. We sort w̃ j to get w̃∗
j with the property that

w∗
i j ≥ w∗

(i+1) j∀i . We also define x1, . . . , xm such that w̃x1 j ≥ w̃x2 j ≥ · · · ≥
w̃xm j ≥ w̃xk j∀k. We can then determine the neighbors Njk of component j ,
requiring that their sharpened weights must lie above a threshold θ and
that the relative weight change from one neighbor to the next is below a
second threshold ψ :

Nj1 = x1 (2.10)

and

Njk =

 xk if w̃∗

k j > θ and
w̃∗

(k−1) j − w̃∗
k j

w̃∗
(k−1) j

< ψ

−1 otherwise
for k = 2, . . . , m

(2.11)

An entry of the connectivity matrix equal to −1 refers to a nonexistent
component in the system. A component with a −1 entry in its connectivity
matrix is therefore expected to be found at the border of the system.

After passing the weights w through the sharpening filter, we can assume
the extracted connectivity matrix to contain only neighbor estimations that
are very likely to be correct. We can therefore compare the neighbor esti-
mations for two components and complement the connectivity matrix (if
component i contains j as its neighbor but not the other way around, store
i as a neighbor of j as well).

The sharpening filter is computationally expensive and requires global
knowledge of the weight matrix w. It is therefore applied only after many
iterations of the core algorithm of equation 2.2.

Getting to Know Your Neighbors 223

2.3 Determining the Learning Parameters. The most appropriate
method for determining the center µ and width σ of the gaussian learn-
ing time window depends on the size of the input stimulus relative to the
input elements. For input stimuli that are small relative to the sensing el-
ements, ON and OFF events are directly correlated. In the example of the
sensory tactile floor, a person stepping from one tile to another creates an
OFF event that correlates directly with the subsequent ON event. However,
for the silicon retina, the ON (dark-to-bright transition) and OFF (bright-to-
dark transition) events, analogous to the on-off cells in biological retinas.
(Lichtsteiner et al., 2008), are usually generated by stimuli with angular
sizes much larger than one pixel. Here we outline the parameter extrac-
tion method first for small stimuli (tactile floor), followed by the required
changes for large stimuli (silicon retina). For clarity, we refer to the main
STDP algorithm as the “algorithm” and the learning window parameter
extraction techniques as “parameter extraction methods.”

2.3.1 Small Stimuli. For small stimuli with direct per-sensor ON-OFF
correlations, we can determine the best learning parameters without using
any additional user-specified constants. If we assume uniformly distributed
event rates across all components, we can define a global vector T that acts as
a buffer containing the most recent time intervals over which components
were in the ON state. Every time an OFF event is generated, the oldest
entry in the buffer is replaced by the latest one representing the time that
the component was last ON. From T, we extract a global µ and σ :

µ(n) = T̃ (2.12)

σ (n) = 0.74 · IQR(T). (2.13)

The median operator (∼) ensures stability over extreme scores in T,
and IQR determines the interquartile range of T. The factor 0.74 is used
to normalize the interquartile range, leading to a robust estimation of the
standard deviation of a normal distribution. In the global case, equation 2.3
uses µi (n) = µ(n) and σi (n) = σ (n) ∀i .

For more biological plausibility and to deal with cases where the event
rates vary by a large amount over the input components, we introduce
individual (local) buffers {Ti }M

i=1 where M is the number of tiles of the
system. Ti contains the most recent time intervals over which tile i has been
loaded. We calculate a local µ̂i and σ̂i for each tile individually using a
similar method to that used for the global case:

µ̂i (n) = T̃i (2.14)

σ̂i (n) = 0.74 · IQR(Ti). (2.15)

224 M. Boerlin, T. Delbruck, and K. Eng

We then assume that neighboring tiles communicate with each other. A
change in µ̂i and σ̂i of tile i is influenced by µk and σk of its estimated
adjacent components k = 1, . . . , m as follows:

µi (n) = µ̂i (n) − 1
3m

m∑
k=1

[µ̂i (n) − µk(n)] (2.16)

σi (n) = σ̂i (n) − 1
3m

m∑
k=1

[σ̂i (n) − σk(n)]. (2.17)

It is advantageous to calculate µ and σ according to a local learning rule (see
equations 2.16 and 2.17) because no global information on tile occupancy is
required as for equations 2.12 and 2.13.

2.3.2 Large Stimuli. For stimuli that are large relative to the sensing ele-
ment spacing, ON and OFF events are not directly correlated in the same
way as for small stimuli. The trailing edge of a large stimulus can generate
an OFF event a very long time after the ON event has occurred. This means
that we cannot measure the length of time that a sensing element was in
the ON state. We apply a more general procedure, inspired by the finding
of Zhang, Tao, Holt, Harris, and Poo (1998), showing that in the retinotectal
system of the frog, there is a critical window of approximately 40 ms during
which the temporal coincidence of spikes arriving at the same tectal cell can
lead to cooperation and competition between synapses. We consider, for the
ON events only (the same method applies for OFF events), a time interval
of size τ . We have an array Ton where each element denotes the last ON
event occurring in each component. When a new ON event occurs at time
t, we find all the time differences between the new event and the last ON
events of the individual components that fall within the time interval τ :

T̂ = {
�t = t − Ton

i | �t < τ
}
. (2.18)

The learning window parameters µ and σ are then calculated as the mean
and standard deviation of T̂. A drawback of this approach is the need for
global information of the event times for all components.

We see from this formulation that the large-stimulus method can po-
tentially handle a larger range of inputs than the small-stimulus method,
since it does not require each sensing element to have effectively isolated
ON/OFF events. However, the price to be paid is the requirement to specify
an event buffer time interval τ (see equation 2.18).

Getting to Know Your Neighbors 225

3 Results

In sections 3.1 and 3.2, we test the algorithm on examples of stimuli that are
small and large relative to the sensor resolution, respectively. Section 3.3
directly compares the small-stimulus and large-stimulus parameter extrac-
tion methods.

3.1 Small Stimuli: Interactive Tactile Floor. The interactive tactile floor
(Delbrück et al., 2007) was developed for an interactive entertainment envi-
ronment (Eng et al., 2003). It was considered desirable to devise a topology
learning algorithm for the floor to avoid the need for cumbersome manual
topology definition each time it was assembled. The floor consists of 360
hexagonal, pressure-sensitive floor tiles, each 0.66 m across, covering a total
area of 136 m2. Since each tile is roughly the size of an average adult human
footstep, the stimuli are considered to be small relative to the resolution of
the sensors. Each tile contains a local processing unit, and all of the tiles
are connected by an industrial automation network to a computer. After
software filtering, data are available about the binary occupancy of each
tile (whether it was loaded or unloaded) at a rate of about 30 Hz. This data
were used to generate tile ON and OFF events for testing our algorithm.

Data were collected from a public exhibition of the interactive environ-
ment. Groups of about 25 to 30 visitors interacted with the environment for
approximately 5 to 6 min; for our testing, we considered a file of 390,000
recorded tile events corresponding to about 160 minutes of operation. About
7.5% of the tiles were loaded at any time. The parameters for the algorithm
were set as follows: (1) η = 0.75

M in equation 2.4, with M being the estimated
number of floor tiles; (2) a = 1.5 in equation 2.8; and (3) θ = 0.9 and ψ = 0.1
in equation 2.11.

Figure 3A plots the total percentage of correctly estimated adjacency
relationships against the number of tile events. The local and global learning
rules yield very similar results, suggesting that visitor behavior is fairly
uniform across the whole floor. The curves increase monotonically with the
exception of a short, rapid decrease at approximately 1.4 × 104 tile events.
This bump can be explained by the immature convergence state of the
weight matrix and the resulting difficulty of accurate neighbor extraction.
After processing all tile events, both methods yield a total of 98.1% correct
adjacency estimations.

To reveal information about the overall topological error, we define the
topological error distance D(n) after n events as the average distance over
all tiles (in units of tile spacings) between a source tile i and its estimated
neighbors Ni j (N being the connectivity matrix):

D(n) = 1
mM

M∑
i=1

m∑
j=1

∥∥rNi j − ri
∥∥, (3.1)

226 M. Boerlin, T. Delbruck, and K. Eng

Figure 3: Progression of correct neighbor estimations for data from the interac-
tive tactile floor. (A) Percentage of correct neighbor estimations plotted against
number of tile events. (B) Topological error distance (calculated according to
equation 3.1) plotted against number of tile events. Global parameters calcu-
lated using equations 2.12 and 2.13 and local parameters using equations 2.16
and 2.17.

where m is the number of neighbors of a tile, M is the total number of
tiles, and ri and rNi j are the discrete positions of tiles i and Ni j , respectively.
The quantity ‖rNi j − ri‖ is the distance between tile i and Ni j in units of
tile spacings. Figure 3B plots the average topological error distance against
the number of processed tile events. The topological error decreases very
quickly and approaches zero as the number of tile events increase. This
suggests that the wrong estimations are very close to their correct position.
The bump observed in Figure 3A can also be seen in the error distance plot.
A drawback of this measure is that in cases where a neighbor of a tile is
incorrectly thought to be nonexistent (a border tile), the error distance will
be zero, although the estimation is incorrect.

Figure 4 shows the performance of the topology-discovering algorithm
(local learning rule) using connectivity maps. Each node represents a tile,
with estimated adjacent tiles connected by a straight line. A black line in
that context stands for a correct connection, a gray line for an incorrect one.
The results obtained by the global and local learning rules are very similar.

The algorithm orders an initially random connectivity scheme into an
ordered map with very few errors. Most errors and incomplete connections
were found at the border of the floor. This deficiency can be understood by
the fact that visitors tend to avoid the borders of the floor (Eng, Douglas, &
Verschure, 2005), generating correspondingly fewer events (see Figure 5A).
Some tiles at the border received fewer than 10 events during the entire

Getting to Know Your Neighbors 227

Figure 4: Development of topology for the interactive tactile floor. A black line
represents a correct connection, a gray line an incorrect one. Each connectivity
map represents the state of the system after a given number of tile events that
are indicated above each map.

Figure 5: (A) Tile event count for each tile after 3.9 × 105 events. The gray-scale
bar indicates the absolute number of events processed per tile. (B) Center µ

of the gaussian learning window for individual tiles estimated using the local
learning rule at a random time during processing. The gray scale displays the
values of µ in units of milliseconds.

recording session, causing estimation difficulties in these regions. Figure 5B
shows µ for each tile calculated at a random point in time during learning
with the local learning rule. Small neighborhoods with similar values of µ

can be seen.
It is useful to know how many events per tile are required in order to get

high accuracy estimations. Figure 6 shows the average number of correctly
estimated neighbors per tile plotted against the number of events per tile.
Approximately 120 events per tile yield five correct neighbor estimations,
while about 550 events per tile are required to estimate all neighbors
correctly.

228 M. Boerlin, T. Delbruck, and K. Eng

Figure 6: Averaged number of correct neighbor estimations per tile, plotted
against the number of processed events per tile. Error bars indicate one standard
deviation.

Figure 7: (A) Representation of simulated damage to tiles (in light gray).
(B) Development of topology after virtual tile damage. The states of the system
are shown after 3.0 × 104, 4.0 × 104, and 3.5 × 105 tile events. Before the start of
processing, the weight matrix was in a converged state.

To test the robustness of the topology-discovery algorithm to simulated
tile damage, we started with a (nearly) converged weight matrix corre-
sponding to the final connectivity map in Figure 4. The same input data set
were then run again, with designated “damaged” tiles (see Figure 7A, light
gray tiles) being excluded from receiving any further input. Figure 7B shows
the development of adapted topology after tile damage. Visible adaptation
starts after about 2.0 × 104 events. After 4.0 × 104 tile events, the connectiv-
ity map is recognizably adapted, with the disrupted connections identified.
Later, after 3.5 × 105 tile events, the connectivity map has nearly completely
adapted.

To test an extreme case of adaptation, we started again from the
(nearly) converged weight matrix of Figure 4. All tiles were then randomly
relabeled, and the same event sequence was processed again. Figure 8A
plots the percentage of correct neighbor estimations plotted against tile

Getting to Know Your Neighbors 229

Figure 8: Relearning of nearest neighbors after random relabeling of tiles. The
relabeling occurs after 3.9 × 105 tile events. (A) Percentage of correct neighbor
estimations plotted against number of processed tile events. (B) Topological
error distance, calculated according to equation 3.1, plotted against number of
processed tile events.

events, and Figure 8B shows the corresponding averaged topological error
calculated according to equation 3.1. Until relabeling (at 3.9 × 105 tile
events), the curves are identical to the ones in Figure 3. After relabeling, the
algorithm reestablishes correct connections between the relabeled tiles. The
curves after relabeling show a similar convergence behavior to the ones
before relabeling, but with a slower starting phase required for forgetting
of the old incorrect weights. Even in this extremely unrealistic scenario, the
algorithm was able to function as expected.

3.2 Large Stimuli: Temporal Contrast Silicon Retina. The temporal
contrast silicon retina chip we used contains 128 × 128 pixels that generate
events corresponding to changes in log intensity (Lichtsteiner et al., 2006).
Salient objects viewed by the retina typically are several pixels across (at
least); hence they are “large” compared to the interpixel spacing, unlike the
human input to the tactile floor. Each pixel outputs ON and OFF events, and
each event signifies a change by a threshold amount of log intensity since the
last event from that pixel (ON-transition = dark-to-bright, OFF-transition
= bright-to-dark). The pixel output streams the ON and OFF events as
asynchronous binary pulses and hence implements the asynchronous spike-
based separation into ON and OFF channels found in the retina or the lateral
geniculate nucleus (LGN).

We ran our topology-discovering algorithm on a sequence of pixel
events captured by the silicon retina, which was mounted on a car driving
around suburban streets. Since the pixels were arranged in a square grid,

230 M. Boerlin, T. Delbruck, and K. Eng

Figure 9: Convergence of retina nearest-neighbor estimations for driving scene
input. (A) Percentage of correct neighbor estimations plotted against number
of processed pixel events. (B) Topological error distance, calculated according
to equation 3.1, plotted against number of processed pixel events.

the algorithm learned the nearest eight neighbors rather than six for the
hexagonal floor tiles. To speed up computation without losing generality,
we processed only a 64 × 64 pixel subarea of the visual field. The param-
eters for the topology learning algorithm were set as follows: (1) η = 0.5

M
in equation 2.4, with M being the currently estimated number of pixels;
(2) a = 0.75 in equation 2.8; (3) θ = 0.94 and ψ = 0.03 in equation 2.11; and
(4) τ = 35 ms in equation 2.18.

We use the same measures to analyze the results as previously described
for the tactile floor. Figure 9A plots the percentage of correctly estimated ad-
jacency connections against the number of pixel events. Correct estimation
increases rapidly up to 80% over the first 5.0 × 105 events, proceeding more
slowly in a somewhat step-wise fashion after that. We predicted 95.8% of
all nearest-neighbor connections successfully after the available 5.1 × 106

events (representing about 1 minute of driving), but complete convergence
was not yet reached. Figure 9B depicts the averaged topological error de-
velopment. The error distance decreases rapidly over the first 5.0 × 105

events and then gradually approaches zero. The step-wise behavior found
in Figure 9A is not observed in the development of topological error.

In Figure 10 the development of topology is represented graphically
by means of connectivity maps. Each pixel is represented in the map as a
dot; for visual clarity, we show only the incorrect connections between two
pixels. Many residual incorrect estimations are found in the upper-right
corner of the pixel grid. These are due to partially transparent internal
reflections from the inside of the windscreen of the car. The reflections cre-
ate rapid event sequences, resulting in incorrect neighbor estimates (long

Getting to Know Your Neighbors 231

Figure 10: Development of topology for the temporal contrast silicon retina
(64 × 64 pixels). Pixels are represented as dots, and incorrect connections are rep-
resented by lines. Correct connections are not shown for visual clarity. Depicted
are the states of the system after 4.0 × 105, 1.0 × 106, and 5.1 × 106 events.

Figure 11: Development of retinal topology after simulated pixel damage. The
states of the system are shown after 4.0 × 105, 8.0 × 105, and 4.8 × 106 events. At
zero events, the weight matrix was in a converged state. Within the damaged
regions, both the correct (gray) and incorrect (black) connections are shown.

vertical lines) that require many more input events to correct than the rest of
the scene. Another problematic region is the lower border of the pixel grid,
where reflections from the hood of the car were common. The consequence
was that border pixels were not recognized as such, leading to incorrect con-
nections originating from these pixels to higher-order neighbors. Further
training with real-world input would eventually resolve these problems.

To test the robustness of the algorithm to simulated pixel damage, we
started with the connectivity matrix obtained after processing all 5.1 × 106

pixel events (see Figure 10). We then “damaged” a number of pixels and
reprocessed the same event data again. The results are shown in Figure 11.
In order to visualize the disruption of connections between functioning
and damaged pixels, both correct (gray lines) and incorrect (black lines)
connections are shown in the damaged area. After 4.0 × 105 events, the
first connections have been disrupted, and the border around the damaged

232 M. Boerlin, T. Delbruck, and K. Eng

Figure 12: Convergence of retina nearest-neighbor estimations for simple grat-
ing input. (Left) Percentage of correct neighbor estimations plotted against
number of processed pixel events. (Right) Topological error distance, calculated
according to equation 3.1, plotted against number of processed pixel events.

pixels begins to emerge. Rematuring of the connectivity maps is largely
completed after 2.0 × 106 events.

Because the highly irregular features in the driving scene retina input
made it difficult to assess its potential performance under more ideal
conditions, we tested the algorithm again using a simple real-world grating
stimulus consisting of sharp black-and-white edges. These edges were
moved in front of the retina in various directions to generate correlated
input for learning. The learning parameters were the same as for the
driving scene, except that the window size (see equation 2.18) was set to
τ = 20 ms for the grating stimulus compared to 35 ms for the driving scene
to allow for the reduced uncertainty in the input. After 4.0 × 106 events,
99.7% of the connections were estimated correctly (final error distance
0.0035), a clearly better result than for the natural stimuli (see Figure 12).
Convergence also occurred faster for the simpler stimulus, with 99% of the
connections correctly identified after 2.2 × 106 events. All but two of the
incorrect connections occurred at the border. Even when considering only
the border elements, 96.7% of border neighbors were recognized correctly,
a result still better than the overall performance for the driving scene input.

3.3 Comparing Small-Stimulus and Large-Stimulus Parameter
Extraction Methods. To directly compare the small-stimulus and large-
stimulus parameter extraction methods, we took a floor test data set con-
taining 69,000 floor events. New synthetic data sets were then generated,
each consisting of the original floor events plus N simultaneous new events
for the N tiles immediately surrounding each original event (N = 1..6).
These new data sets approximate the input provided by a person with

Getting to Know Your Neighbors 233

Figure 13: Variation of floor topology learning algorithm performance with
simulated increase in stimulus size. The increase in stimulus size was sim-
ulated by simultaneously activating N of the directly adjacent tiles to each
original input event, where N ranges from 0 to 6. Solid line: Small-stimulus pa-
rameter estimation method with local event buffers (see section 2.3.1). Dashed
line: Large-stimulus parameter estimation method (see section 2.3.2) with time
interval 1.0 s.

progressively larger feet walking on the floor. For the large-input param-
eter extraction method, we chose a time interval τ = 1.0 s. The results
(percentage of correct connections) of testing the new data sets using both
parameter extraction methods are summarized in Figure 13. For the origi-
nal “small” input, the algorithm using both the small-stimulus and large-
stimulus parameter estimation methods performs equivalently (about 90%
correct). However, for “larger” input, the large-stimulus method maintains
approximately constant performance, while the small-stimulus method
performs much worse (below 20% correct for a seven-tile-sized stimu-
lus). Thus, we can conclude that for the synthetic tests we conducted, the
large-stimulus parameter extraction method performs better than the small-
stimulus method. Note that it was not possible to repeat the direct compari-
son for the retina input data, since there is no simple way to generate mean-
ingful synthetic small-stimulus data from existing large-stimulus data.

4 Discussion

We have presented a topology-discovery algorithm for unsupervised adap-
tive learning of the adjacency matrix for systems with initially unknown
component configurations. The requirements for learning the configuration

234 M. Boerlin, T. Delbruck, and K. Eng

are the number of nearest neighbors for the components and the timings
of labeled events from each component. The algorithm was shown to satis-
factorily handle real-world noise and irregularities of complex real-world
input in two event-based systems. For both systems, most adjacency con-
nections (more than 95%) could be found after a reasonable number of
events in real time, considering that in most cases, learning from scratch
need only be carried out once. We also demonstrated the ability of the algo-
rithm to adapt to extreme topological changes in the system (e.g., damage
of components, random rearrangement of components).

Given the primary constraints of the unsupervised learning problem
to be solved (i.e., unknown geometry, unknown borders, and event-based
input), it is difficult to imagine any completely different alternative algo-
rithms that do not take advantage of the timing of the input events. Rather,
any alternative or improved algorithms will take the form of modifications
to the basic STDP concept. The STDP learning window used was a sym-
metric gaussian function with no negative branches to model long-term
depression (LTD) as found in naturally occurring STDP (Bi & Poo, 1998).
The weights were kept within reasonable limits by a global normalization
step, which in the future could be replaced by on STDP learning window
including LTD. Such a change could remove the biologically unrealistic
need for knowledge of the sum of the weights, at the cost of requiring care-
ful tuning of the learning window to prevent the weights from heading
toward zero or infinity. An LTD component could also help to accelerate
learning by depressing weights for events with very short time intervals.
Any number of alternative learning window shapes could also be used
to give better learning performance if more a priori information is known
about the statistical properties of the input.

Problems with determining neighbors in the silicon retina were caused
by large variations in the speed of stimulus movement due to reflections.
We view this problem as a strength of our real-world testing process. It
is unlikely that we would have detected this issue if we had used only
standard or simulated moving grating stimuli. The variations in the stim-
ulus movement speeds necessitated a larger value of τ compared to that
used for the simple grating stimulus. One way to improve the handling of
different speeds could be to learn the connectivity with multiple parallel
systems running at different timescales. This process, which is equivalent to
learning not just nearest neighbors but also higher-order neighbors, would
provide not just the connectivity but also an idea of the most commonly
occurring stimulus speeds and directions.

An alternative method for dealing with large local differences in
stimulus speed, although applicable only in the small-stimulus case, could
be to change the number of local buffers (see equations 2.16 and 2.17)
to be an intermediate value between 1 and M. In this case, each buffer
refers to a cluster of sensing elements, the members of each cluster being
assigned during learning by the current neighborhood estimator. Choosing

Getting to Know Your Neighbors 235

an intermediate value provides the opportunity to trade off the degree of
localization of information against the computational cost of calculating µ

and σ . Using an intermediate number of buffers would require complex
modifications to equations 2.16 and 2.17, since the neighborhood clusters
update dynamically during learning. Such a method could be seen as
being equivalent to clustering the sensing elements into regions of different
characteristic speeds.

Our primary reason for testing our algorithm with real data collected
from hardware, rather than using simulations, was to avoid making the
extra assumptions inherent in using simulations. We could therefore be
more confident that our results can be directly applied to real-life problems
in robotics and human-machine interaction with minimal extra parame-
ter tuning. For the tactile floor data, although several models of pedestrian
movement exist (Helbing, Farkas, & Vicsek, 2000; Dijkstra, Jessurun, & Tim-
mermans, 2001), they usually treat pedestrians as two-dimensional unit cir-
cles. In particular, they do not include individual footsteps that would be
required to produce realistic simulated tactile input data. For the retina, in
principle it would have been possible to generate simulated input, but that
would have required us to generate and process synthetic high-speed im-
ages using huge amounts of computational effort and data storage. Normal
high-speed video cameras combined with off-line processing could also
have been used, but the silicon retina achieves an equivalent result in real
time using several orders of magnitude less power.

The differences between the methods used to determine the size of the
learning window were necessitated by the lack of correlation between ON
and OFF events for large stimuli. The large-stimulus parameter extraction
method also works for small stimuli, but at the cost of using an extra pa-
rameter τ (see equation 2.18). We showed that the small-stimulus parameter
extraction method works only as well as the large-stimulus method when
the stimulus is the same size as (or smaller than) the sensing elements (see
Figure 13). However, the higher generality of the small-stimulus method in
requiring no extra parameters makes it attractive for situations for use in
fully unsupervised situations.

Despite its generally superior performance, one other disadvantage of
the large-stimulus parameter extraction method is that it requires global in-
formation of the spike times to learn the most appropriate learning window
parameters. However, this is not necessarily a problem for biological plau-
sibility. While the automatic learning window adjustment feature is use-
ful for artificial systems, biological systems may have evolved hard-wired
learning windows inherent in the biophysical properties of the relevant
intracellular mechanisms. The differences between the parameter extrac-
tion methods could also point to differences in the mechanisms of natural
topology formation between mammalian retinas (larger stimulus relative
to element size) and insect retinas (smaller stimulus relative to element size,
and compound eyes).

236 M. Boerlin, T. Delbruck, and K. Eng

Another aspect of the algorithm that does not map obviously onto a
biologically plausible implementation is the edge detection sharpening
filter, which requires global knowledge of the connectivity matrix. This
feature is useful for artificial systems, but it seems unlikely that special
mechanisms are employed to take care of small edge effects in mammalian
retinas with tens of millions of elements. However, edge effects may be
more important for insect retinas with only a few hundred or thousand
elements, and with small numbers of elements, it may become more
reasonable to postulate the existence of global signaling processes for
handling edge effects during development.

In the tactile sensory floor, limitations were found for regions that
received very small numbers of events (as few as about 10 events in
2.5 hours in some cases). Since the floor could also provide luminous
output, a way of actively improving this situation could be for the floor
to output a confidence level for its own topology. Brightly lit tiles could
indicate tiles with little cumulative traffic, inviting pedestrian traffic to
the area to dim and eventually extinguish the tiles. Damaged tiles, no
longer providing input to the system, would cause their neighbors to
grow brighter and then progressively dimmer again as the system weights
adapted to the missing component.

A future possible development of the algorithm includes superimposing
multimodal input streams (e.g., visual and tactile input) for sensor fusion.
Such an algorithm could then form the basis of a system for multimodal
tracking. Direct applications of the algorithm include automatic topology
learning for distributed sensor networks, automatic detection and compen-
sation of defects in imaging arrays, and adaptive learning of somatotopy or
retinotopy in neural implants.

Acknowledgments

We acknowledge the assistance of the reviewers for their detailed and in-
sightful feedback on the letter. In addition, we thank the developers of
the tactile sensory floor: Rodney Douglas, Adrian Whatley, Paul Verschure,
Klaus Hepp, and the rest of the Ada exhibit team. We also thank Patrick
Lichtsteiner for his development work on the latest version of the silicon
retina. This work was supported by the Institute of Neuroinformatics at the
University of Zurich and ETH Zurich.

References

Bi, G.-q., & Poo, M.-m. (1998). Synaptic modifications in cultured hippocampal
neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell
type. Journal of Neuroscience, 18(24), 10464–10472.

Getting to Know Your Neighbors 237

Delbrück, T., Whatley, A. M., Douglas, R. J., Eng, K., Hepp, K., & Verschure, P. F. M. J.
(2007). A tactile luminous floor for an interactive autonomous space. Robotics
and Autonomous Systems, 55, 433–443.

Dijkstra, J., Jessurun, A. J., & Timmermans, H. J. P. (2001). A multi-agent cellular
automata model of pedestrian movement. In M. Schreckenberg & S. D. Sharma
(Eds.), Pedestrian and evacuation dynamics (pp. 173–181). Berlin: Springer-Verlag.

Elliott, T., Maddison, A. C., & Shadbolt, N. R. (2001). Competitive anatomical and
physiological plasticity: A neurotrophic bridge. Biological Cybernetics, 84, 13–
22.

Elliott, T., & Shadbolt, N. R. (1999). A neurotrophic model of the development of the
retinogeniculocortical pathway induced by spontaneous retinal waves. Journal
of Neuroscience, 19(18), 7951–7970.

Eng, K., Baebler, A., Bernardet, U., Blanchard, M., Costa, M., Delbruck, T., et al.
(2003). Ada—intelligent space: An artificial creature for the Swiss Expo.02. In
Proceedings of the IEEE/RSJ International Conference on Robotics and Automation.
Piscataway, NJ: IEEE.

Eng, K., Douglas, R. J., & Verschure, P. F. M. J. (2005). An interactive space that learns
to influence human behaviour. IEEE Transactions on Systems, Man and Cybernetics
Part A, 35(1), 66–77.

Galli, L., & Maffei, L. (1988). Spontaneous impulse activity of rat retinal ganglion
cells in prenatal life. Science, 242(4875), 90–91.

Goodhill, G. J. (1993). Topography and ocular dominance: A model exploring
positive correlations. Biological Cybernetics, 69(2), 109–118.

Helbing, D., Farkas, I., & Vicsek, T. (2000). Simulating dynamical features of escape
panic. Nature, 407, 487–490.

Katz, L. C., & Shatz, C. J. (1996). Synaptic activity and the construction of cortical
circuits. Science, 274, 1133–1138.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.
Biological Cybernetics, 43, 59–69.

Lichtsteiner, P., Posch, C., & Delbruck, T. (2006). A 128 × 128 120dB 30mW asyn-
chronous vision sensor that responds to relative intensity change. In Proceedings
of the International Solid State Circuits Conference (ISSCC 2006). Piscataway, NJ:
IEEE.

Lichtsteiner, P., Posch, C., & Delbruck, T. (2008). A 128 × 128 120dB 15us latency
asynchronous temporal contrast vision sensor. IEEE Journal of Solid-State Circuits,
43, 566–576.

McLaughlin, T., Torborg, C. L., Feller, M. B., & O’Leary, D. D. M. (2003). Retinotopic
map refinement requires spontaneous retinal waves during a brief critical period
of development. Neuron, 40, 1147–1160.

Meister, M., Wong, R. O. L., Baylor, D. A., & Shatz, C. J. (1991). Synchronous bursts of
action potentials in ganglion cells of the developing mammalian retina. Science,
252(5008), 939–943.

Miller, K. D., Keller, J. B., & Stryker, M. P. (1989). Ocular dominance column
development: Analysis and simulation. Science, 245(4918), 605–615.

Swindale, N. V. (1996). The development of topography in the visual cortex: A
review of models. Network: Computation in Neural Systems, 7, 161–247.

238 M. Boerlin, T. Delbruck, and K. Eng

von der Malsburg, C., & Willshaw, D. J. (1976). A mechanism for producing contin-
uous neural mappings: Ocularity dominance stripes and ordered retino-tectal
projections. Exp. Brain. Res. Suppl., 1, 463–469.

Wong, R. O. (1999). Retinal waves and visual system development. Annu. Rev.
Neurosci., 22, 29–47.

Zhang, L., Tao, H. W., Holt, C. E., Harris, W. A., & Poo, M. M. (1998). A critical win-
dow for cooperation and competition among developing retinotecal synapses.
Nature, 395, 37–44.

Received June 20, 2007; accepted April 7, 2008.

