
3/30/2012

1

ETH Course 402-0248-00L: Electronics
for Physicists II (Digital)

• 1: Setup uC tools, introduction

• 2: Solder SMD AVR32 board

• 3: Build application around AVR32 – finish
today

• 4: Design your own PCB schematic

• 5: Place and route your PCB

• 6: Start logic design with FPGAs

Exercise 3: “Sound volume robot”
• measures sound volume and moves arm to

indicate loudness

• microphone -> preamp -> ADC -> uC -> PWM output

(debugging, programming)

“RC” servos (Radio-Control Servo-Motors)

• Position controlled – Servo has internal position
measurement and controller

• Rotation angle 120 degrees
• Pulse width from 1-2ms sets desired position
• Pulses must be sent at frequency 50-200Hz
• Pulse height >2V

Period 5-20ms

Width 1-2ms

4

• Cheap (< 1$)
• Electret material, no polarization voltage

is required
• Low-noise JFET buffer
• Metal foil is connected to source of the

JFET through metal capsule

metal capsule
metal ring
metal foil
electret foil
air gap
spacer
metal backplate

case

Electret Microphone

Microphone + Preamp

Servo power supply

AVR32 Analog to Digital converter

• 10-bit Successive approximation
register (SAR) type

• 6 multiplexed single-ended input
channels

• Max combined sample rate
384ks/s

• External trigger

• Hardware sequencer

• Peripheral DMA

3/30/2012

2

• Fixed-point digital signal processing pipeline

• Using timer interrupts for regular ADC
sampling intervals

Signal processing pipeline
produces servo position corresponding to

average sound volume

Mic

Mean
removal
100Hz

High pass

Rectification
Square or
absolute

value

Smoothing
0.5Hz

lowpass

Servo Command
Normalizer+clipper

Some more about ADCs

High resolution
Low speed and
power

Medium
resolution
Medium power

Low resolution but
fast and hot

Single slope
(imprecise)

SAR (good
tradeoffs, most uC)

Flash (video rate,
oscilloscopes)

Dual slope (precise
but very slow)

Algorithmic (SD) 2-step

ADC specifications

INL Integral nonlinearity Max absolute sample
deviation in bits

DNL Differential
nonlinearity

Max possible step size
variation in bits

Sample rate

Latency In samples How long in samples it takes
for a conversion (can be >>1
for pipelined converter)

Reference
voltage

Volts Minimum resolution

“Quantization noise”

00

01

10

11

code

2-bit converter

Vin
1/8 1/4 1/2 3/4

out n
2

2 LSB
Q

LSB
QRMS

Q

12

3.5

i
V V V

V
V

V
V

Vin
Vout

1

Max possible SNR? (Signal power/Noise power).
For uniformly distributed signal like a sawtooth, we get

2

REF

LSB

10

12SNR= 2

12
20 log 2 dB 6 dB

. . for N=10, SNR=60dB

N

N

V

V

N

e g

3/30/2012

3

Successive Approximate Register (SAR) ADC

SAR+control

DAC

S/H

code

+
-

Vin

VDA

SAR+control

DAC

S/H

code

+
-

Vin

VDA

t
1
2
3
4
5

Vin

VDA

B
1
0
1
0
1

code=10101…

Using timer interrupts for regular ADC sampling
intervals in an Interrupt Service Routine (ISR)

Normal main
loop, waiting for

flag

Normal main loop, see flag
set, reads sample, starts

new sample, does DSP, and
updates PWM

Timer

ISR
push

Your ISR (set
TAKE_SAMPLE flag)

ISR
pop

Time
Timer interrupt, e.g.
Every 100us

Done by hardware, takes
~20 cycles

Initialize by starting first ADC sample in main loop

ISR
static void tc_irq(void) {

// Increment the counter, which is also used to
determine servo updates
tc_tick++;

// set a flag to tell main loop to take a sample
takeSampleNow = TRUE;

// Clear the interrupt flag. This is a side effect
of reading the TC SR.
tc_read_sr(EXAMPLE_TC, TC_CHANNEL);

// Toggle a GPIO pin (this pin is used as a regular
GPIO pin).
gpio_local_tgl_gpio_pin(AVR32_PIN_PA10); // debug,
should toggle at desired sample rate

}

Timer Counter (TC) setup void init_tc(){

static const tc_waveform_opt_t WAVEFORM_OPT = {// Timer/Counter Options for waveform generation.

.channel = TC_CHANNEL, // Channel selection.

.wavsel = TC_WAVEFORM_SEL_UP_MODE_RC_TRIGGER,// Waveform selection: Up mode with automatic
trigger(reset) on RC compare.

.tcclks = TC_CLOCK_SOURCE_TC2 // Internal source clock 2, connected to
fPBA/2=15.5MHz.

};

static const tc_interrupt_t TC_INTERRUPT = {//! Timer/counter interrupts.

.cpcs = 1,//! RC compare interrupt. Interrupt with counter reaching Reset Count value (RC)

};

volatile avr32_tc_t *tc = EXAMPLE_TC;

Disable_global_interrupt();

INTC_register_interrupt(&tc_irq, EXAMPLE_TC_IRQ, AVR32_INTC_INT0); // Register the RTC interrupt
handler to the interrupt controller.

Enable_global_interrupt();

// Initialize the timer/counter.

tc_init_waveform(tc, &WAVEFORM_OPT); // Initialize the timer/counter waveform.

// Set the compare triggers for timer/counter (TC).

// TC counter is 16-bits, with secondary clock TIMER_CLOCK2 = FPBA clock/2 = 33 MHz/2=15.5MHz.

// Lowest possible freq is 15.5MHz/(2^16)=236Hz.

// We want ADC sample rate of FADC Hz. To get this, we load RC (Reset Counter) value so that

// TC reaches RC value every 1/FADC s. Therefore we configure TC so that RC=FPBA/FADC.

// E.g., to get FADC=10kHz, we need RC=15.5MHz/10000=1550.

// The timer interrupt will then run at 10kHz (verfied on scope).

// The timer interrupt for debug toggles PA10 which will result in a square wave at 5kHz (verified)

tc_write_rc(tc, TC_CHANNEL, (FPBA /2) / FADC); // Set RC value.

tc_configure_interrupts(tc, TC_CHANNEL, &TC_INTERRUPT);

tc_start(tc, TC_CHANNEL); // Start the timer/counter.

}

Alex Hungenberg tried the following
hardware-driven approach

1. The Timer-Counter is set up to
trigger the ADC at 40kHz.

2. When the ADC completes a
conversion, it generates an ISR

3. The ISR sets a flag

4. The main loop sees the flag
set, reads the ADC value, does
DSP, and sets the servo PWM
pulse width.

TC ADC

ADC ISR

main

adc_ready

PWM

3/30/2012

4

What’s wrong with this ISR?

1. The ISR is triggered by the ADC.

2. Because Channel Data Register is not read in the ISR, the interrupt flag is not
cleared.

3. The interrupt is immediately re-triggered, so the main loop always sees the
flag set.

ADC
status

register

End Of
Conversion
bit

Fixed point signal processing pipeline

Mic

100Hz
High pass

Square

0.5Hz
lowpass

Normalizer
+ clipper

We need a digital low & high pass filters, like an RC or CR filter

A simple IIR high pass filter (discrete time)

(1)

t t t t t t
t

t t t t t t t

t t t t

y y x x
y

t t

t

y y y x x

y
C x y

R
RCy y RCx

y y x

y x x

A simple IIR high pass digital filter
(fixed point, using binary shift operations)

(1)

1
If , then

2

2
(1 1)

1

2

1

t t t t t t

n

n

t t tn

t t t t t t

y y x x

y y y n n

y xn ny x

What is the time constant?

3

Suppose 100us (10kHz sample rate)

and 1 / 256 (n=8).

Then

100us x 256=25.6ms

1
Corner frequency 6.2

2

To filter with n times longer time constant, you can skip n samples

dB

t

t

f Hz

DSP code sample
void device_task(void) {

if (takeSampleNow) { // flag set in timer ISR

gpio_local_tgl_gpio_pin(AVR32_PIN_PA11); // debug

takeSampleNow=FALSE;

// signal processing

S16 adcval = (S16)get_adc_value(); // 0-1023=3.3V

if (initialized)

 audMean = ((adcval-audMean)>>NTAU1)+audMean; // TODO mix old and new value

else

 audMean = adcval; // init filter with first reading

// only update meanSq at TAU2 interval, so to produce effective time constant that
is TAU2 times tau of audMean filtering

if(dspCounter--==0){

dspCounter=TAU2;

long diff = adcval - audMean; // signed diff of sample from mean

long sq = diff * diff; // square diff

if (initialized)

 meanSq = ((sq-meanSq)>>NTAU1)+meanSq; // low pass square diff

else

 meanSq = sq;

}

3/30/2012

5

USB – Universal Serial Bus

• Physical layer

• User perspective (coder)

• Under the hood

– Device side

– Host side

• Achieving high performance

USB Physical layer

• Up to USB 2.0 – full
(12Mbps) and high
(480Mbps) speed

• USB 3.0 super speed
(5Ggbs)

USB definitions

• IN means towards the host (the PC)

• OUT means towards the device (uC)

USB on PCB

USB user perspective (as coder)
Device side – Include USB driver Main loop

3/30/2012

6

IN direction OUT direction

USB
device-

side
endpoints
and FIFOs

USB interrupts (you don’t worry about them!)

Endpoints – multiple virtual channels

Can be double buffered

Double-buffered transfers can increase continuity

3/30/2012

7

Host vs. Device
For the USBB in host mode, the term “pipe” is used instead of

“endpoint” (used in device mode).
A host pipe corresponds to a device endpoint

Host side – using pyusb

The key to high performance on host side:
Asynchronous or Overlapped IO

• On the host side, an Input-Output (IO) thread manages the
USB IO.

• Multiple buffers (which can be much larger than the device
FIFO size) are submitted to the USB driver / host controller
to be filled by the USB controller.

1. When a buffer is filled, the IO thread is notified
asynchronously, which wakes it up.

2. The IO thread processes the buffer, and then gives it back
to the controller. The IO thread then notifies the main
user code that data is available, e.g. by writing to a
software queue.

• That way, the user doesn’t block waiting for data
• Our pyusb example doesn’t do this yet

USB performance

• USB full speed (12Mbps): about 1MBps

• USB high speed (480Mbps): about 40MBps

• USB super speed (5Gbps): ??

3/30/2012

8

ICs for USB

•Many uC. Also FTDI. USB full
speed

•CypressFX2 USB high
speed

•CypressFX3 USB super
speed

CypressFX2

CPLD logic
chip. Writes
to FX2 FIFOs

CypressFX3 ftdichip.com

• uC UART – USB
interface; looks
like COM serial
port on host side.

• Max speed is only
12Mbaud for the
UART port
unfortunately

