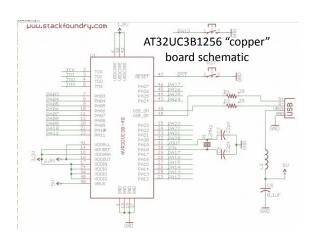
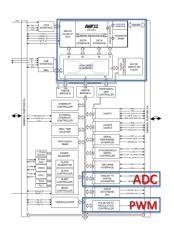
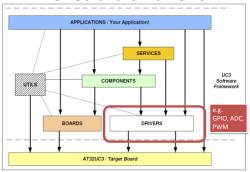

ETH Course 402-0248-00L: Electronics for Physicists II (Digital)

- 1: Setup uC tools, introduction
- 2: Solder SMD AVR32 board
- 3: Build application around AVR32
- 4: Design your own PCB schematic
- 5: Place and route your PCB
- · 6: Start logic design with FPGAs

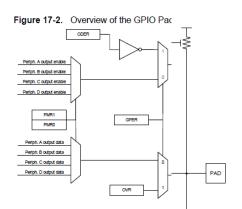
The AVR32 AT32UC3B1256

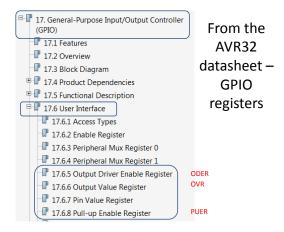

- AT = Atmel: Big microcontroller company
- 32 = 32 bit architecture
- UC3 = Atmel microcontroller family
- B = more powerful and expensive variant (\$7 each @25 units)
- 1 = revision
- 256 = 256kB internal high speed flash memory (32kB single cycle SRAM)


The "bronze" board


AVR32 capabilities (Ex. 3)

- System Functions
 - Power and Clock Manager
 - Two Multipurpose Oscillators Watchdog Timer, Real-Time Clock
 - Timer
- Interrupt Controller
- Auto-vectored Low Latency Interrupt Service with Programmable Priority
- Universal Serial Bus (USB) Device 2.0 Full Speed
- One Three-Channel 16-bit Timer/Counter (TC)
- One 7-Channel 20-bit Pulse Width Modulation Controller
- **Three Universal** Synchronous/Asynchronous Receiver/Transmitters (USART)
- One Master/Slave Serial Peripheral Interfaces (SPI) with Chip Select Signals
- One 8-channel 10-bit Analog-To-Digital Converter, 384ks/s




AVR32 Software Framework

"Registers" are memory locations that control or report hardware state

- Example: the PWM registers control everything about PWM, such as period, duty cycle, etc.
- Example: The GPIO (General Purpose Input Output) registers control the pins, such as whether the pin is an output (digital 0 or 1) or input (high impedance). If the pin is an input, another register controls if a pull-up resistor is enabled.

ODER register example

Name:	ODER						
Access Type:	Read, Write, Set, Clear, Toggle 0x40, 0x44, 0x48, 0x4C						
Offset:							
Reset Value:							
31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

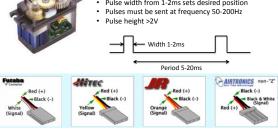
P0-31: Output Driver Enable
0: The output driver is disabled for the corresponding pin.
1: The output driver is enabled for the corresponding pin.

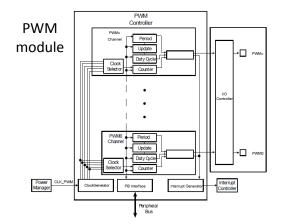
All register have a default reset value

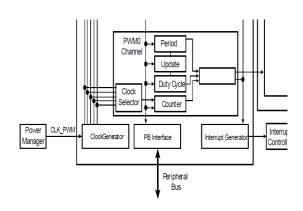
Table 17-4. Register Reset Values Port Register Reset Value 0 **GPER** 0xFFFFFFF 0 PMR0 0x00000000 0 PMR1 0x00000000 0 **ODER** 0x00000000 OVR 0x00000000 0 0 PUER 0x00000000

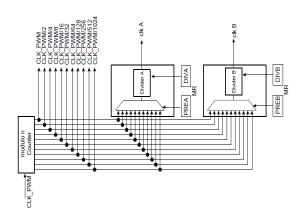
On reset, all output drivers are disabled

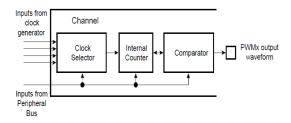
Exercise 3: "Sound volume robot"

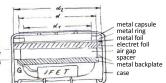

- · measures sound volume and moves arm to indicate loudness
- microphone -> preamp -> ADC -> uC -> PWM output




"RC" servos (Radio-Control Servo-Motors)

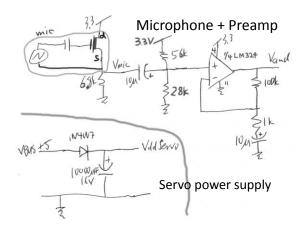



- Position controlled Servo has internal position measurement and controller
- Rotation angle 120 degrees
- Pulse width from 1-2ms sets desired position

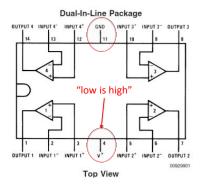


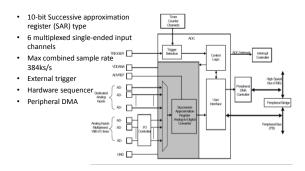
Timing registers

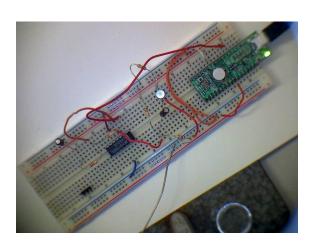
- Period counter is reset after cprd
- Duty Cycle waveform switches after *cdty*
- Update cprd or cdty is updated from cupd, depending on cpd


Electret Microphone

- Cheap (< 1\$)
- Electret material, no polarization voltage is required
- Low-noise JFET buffer
- Metal foil is connected to source of the JFET through metal capsule







LM324 quad JFET opamp

AVR32 Analog to Digital converter

