ETH Course 402-0248-00L: Electronics
for Physicists Il (Digital)

* 1: Setup uC tools, introduction

* 2:Solder SMD AVR32 board

* 3: Build application around AVR32 - finish
today

* 4: Design your own PCB schematic
* 5: Place and route your PCB
* 6: Start logic design with FPGAs

“RC” servos (Radio-Control Servo-Motors)

.

Position controlled — Servo has internal position
measurement and controller

Rotation angle 120 degrees

Pulse width from 1-2ms sets desired position
Pulses must be sent at frequency 50-200Hz
Pulse height >2V

:)‘_|<— Width 1-2ms

Period 5-20ms

o e s e

Twimbe P AIRTRONICS non-"Z"

Red + m (8] ,led (3] lh(l (2]
! Black (-) Black (-) Black & Whi
Black (<) - o Black (-] (A e
wm Vell led (8]
(signal) (signal) Slgnan

wiIc

»77 Microphone + Preamp
33

* 10-bit Successive approximation

* 6 multiplexed single-ended input
channels
* Max combined sample rate
384ks/s oo, [——+
AN D
* External trigger
* Hardware sequencer .., [o E
* Peripheral DMA L | ‘
L [}
fo O
umm< " | ‘
L O ol
a0 [J—o

3/30/2012

Exercise 3: “Sound volume robot”

* measures sound volume and moves arm to

indicate loudness

* microphone -> preamp -> ADC -> UC -> PWM output

(e B

- S

(debugging, programming)

Electret Microphone

* Cheap (<19)

* Electret material, no polarization voltage
is required

* Low-noise JFET buffer

* Metal foil is connected to source of the
JFET through metal capsule

metal capsule
metal ring
metal foil
electret foil

- air gap

spacer

~ metal backplate

case

17
F«—f

w IS

backplate
metal ring
capsule

AVR32 Analog to Digital converter

register (SAR) type

Freyraea s
()

3/30/2012

* Fixed-point digital signal processing pipeline
* Using timer interrupts for regular ADC
sampling intervals

Signal processing pipeline Some more about ADCs
produces servo position corresponding to
average sound volume

High resolution Medium Low resolution but
Low speed and resolution fast and hot
power Medium power
Mean Rectification N -
removal Square or hi Servo C d Single slope SAR (good Flash (video rate,
100Hz absolute 0.5Hz Normalizer+clipper (imprecise) tradeoffs, most uC) oscilloscopes)
High pass value lowpass

Dual slope (precise Algorithmic (ZA) 2-step

3 L/;@P‘ @)V G Rl Rior)

Mic
e . “ . . . ”
ADC specifications 24t converter Quantization noise
" Vou vV, =V, -V,
N - Q out in
INL Integral nonlinearity Max absolute sample :)
deviation in bits in 2 Vv
10 V — LSB
code Q 12
DNL Differential Max possible step size Vv
nonlinearity variation in bits V __ _LSB
01 s —
Sample rate QRMS 3.5
Latency In samples How long in samples it takes
for a conversion (can be >>1 00 L L O 9
for pipelined converter) 1/81/4 1/2 3/4 1 V.
: REF
in
N
SNR=| 12 =2
Max possible SNR? (Signal power/Noise power). LSB
Reference Volts Minimum resolution For uniformly distributed signal like a sawtooth, we get 12
voltage
=20log, 2"dB = 6N dB

e.g. for N=10, SNR=60dB

code

Using timer interrupts for regular ADC sampling
intervals in an Interrupt Service Routine (ISR)

Normal main loop, see flag
set, reads sample, starts
new sample, does DSP, and
updates PWM

Normal main
loop, waiting for
flag

Done by hardware, takes
~20 cycles

Your ISR (set
TAKE_SAMPLE flag)

Time
Timer interrupt, e.g.
Every 100us

Initialize by starting first ADC sample in main loop

wameor Timer Counter (TC) setup

static const tc_waveform_opt_t WAVEFORM_OPT = {// Timer/Counter options for waveform generation.

_channel = TC_CHANNEL, // channel selection.

.wavsel = TC_WAVEFORM_SEL_UP_MODE_RC_TRIGGER,// waveform selection: Up mode with automatic
trigger(reset) on RC compare.

.teclks = TC_CLOCK_SOURCE_TC2 // Internal source clock 2, connected to
PBA/2=15.5MHZ ..

b

static const tc_interrupt_t TC_INTERRUPT = {//! Timer/counter interrupts.

.cpcs = 1,//1 RC compare interrupt. Interrupt with counter reaching Reset Count value (RC)
iy

volatile avr32_tc_t *tc = EXAMPLE_TC;

Disable_global_interrupt();

INTC_register_interrupt(&tc_irq, EXAMPLE_TC_TRQ, AVR32_INTC_INTO); // Register the RTC interrupt
handler to the interrupt controller.

Enable_global_interrupt();

// Initialize the timer/counter.

te_init_waveform(tc, &WAVEFORM_OPT); // Initialize the timer/counter waveform.

// set the compare triggers for timer/counter (TC).

// TC counter is 16-bits, with secondary clock TIMER_CLOCK2 = FPBA clock/2 = 33 MHz/2=15.5MHz
// Lowest possible freq is 15.5MHz/(2A16)=236Hz.

// We want ADC sample rate of FADC Hz. To get this, we load RC (Reset Counter) value so that
// TC reaches RC value every 1/FADC s. Therefore we configure TC so that RC=FPBA/FADC

// E.g., to get FADC=10kHz, we need RC=15.5MHz/10000=1550.

// The timer interrupt will then run at 10kiz (verfied on scope)

// The timer interrupt for debug toggles PA10 which will result in a square wave at Skiz (verified)
te_write_rc(tc, TC_CHANNEL, (FPBA /2) / FADC); // Set RC value.

tc_configure_interrupts(tc, TC_CHANNEL, &TC_INTERRUPT);

te_start(tc, TC_CHANNEL); // start the timer/counter.

3/30/2012

code

OrOrw

n > wiN-
—>|

code=10101...

ISR

static void tc_irq(void) {

// Increment the counter, which is also used to
determine servo updates
to_tick++;

// set a flag to tell main loop to take a sample
takeSampleNow = TRUE;

// Clear the interrupt flag. This is a side effect
of reading the TC SR.

tc_read_sr(EXAMPLE_TC, TC_CHANNEL);

// Toggle a GPIO pin (this pin is used as a regular
GPIO pin).

gﬁio_1oca1_tg1_gpio_pingAVR32_PIN_PA10); // debug,
should toggle at desired sample rate

Alex Hungenberg tried the following
hardware-driven approach

1. The Timer-Counter is set up to
trigger the ADC at 40kHz.

2. When the ADC completes a e

conversion, it generates an ISR ADC ISR

3. The ISR sets a flag
4. The main loop sees the flag adc_ready
set, reads the ADC value, does

DSP, and sets the servo PW
pulse width.

3/30/2012

What'’s wrong with this ISR?

attribute. ((interroat) Fixed point signal processing pipeline
static void adc_int_handler(veid) { 0.5Hz Normalizer
adc_ready = 1; 100Hz Square lowpass + clipper

// volatile avr32_adc_t *adc = &AVR32_ADC; High pass

/7 update_pwm(*((unsigned long *)(&(adc->cdrd)))); M v I Pw i
! SUHBR MW 0 Pt
ADC Tnd of R == —
Mic

25786 Status Register
status 4

register | Name: SR

Conversion EOC2
bit

* EOCn: End of Conversion n
These bits are set when the corresponding conversion is complete.
These bits are cleared when the corresponding CDR or LCDR registers are read. We need a digital low & high pass filters, like an RC or CR filter
0: Corresponding analog channel (if implemented) is disabled, or the conversion is not finished.
1: Corresponding analog channel (if implemented) is enabled and conversion is complete.

. The ISR is triggered by the ADC.

. Because Channel Data Register is not read in the ISR, the interrupt flag is not
cleared.

N

3. The interrupt is immediately re-triggered, so the main loop always sees the
flag set.

A simple IIR high pass digital filter

A simple IR high pass filter (discrete time) (fixed point, using binary shift operations)

X %zc(x_y) X
h___{ 7 RCy +y =RCx ~__{ 7 Veroe ==y, + X5 =X,
" Tty =X : Ifa=2i", then
B r Yesor = Ve +y, =1 Xesot — X - 1
ot ot 1-aly, = > ve=[(y.<n)-1]>n
ot
a=— Ve =[(v <n)=1]>n+ (x5 — %)

Veest =Ve =AYy T X5 — X%,
:(1—6())/[+ X5t — X

.) DSP code sample
What is the time constant? void dovice_task(void) ¢

if (takesampleNow) { // flag set in timer ISR
gpio_local_tgl_gpio_pin(AVR32_PIN_PA11); // debug
takeSampTeNow=FALSE ;

// signal processing

St X 516 adcval = (s16)get_adc_value(); // 0-1023=3.3v
a=— — 7/
v if (initialized)
Suppose Jt =100us (10kHz sample rate) R audMean = ((adcval-audvean)>>NTAUL)+audMean; // TODO mix old and new value

else

and @ =1/256 (n=8).

Then // only update meansq at TAU2 interval, so to produce effective time constant that
7 =100us x 256=25.6ms is TAU2 times tau of audmean filtering
if(dspCounter--==0){
1 dspCounter=TAU2;
Corner frequency f,,, = ——=6.2Hz Tong diff = adcval - audvean; // signed diff of sample from mean
2xt Tong sq = diff * diff; // square diff
To filter with n times longer time constant, you can skip n samples if (initialized)
meansq = ((sq-meansq)>>NTAUl)+meansq; // low pass square diff
else
meansq = sq;

audmean = adcval; // init filter with first reading

USB — Universal Serial Bus USB Physical layer Uiy,

* Physical layer

* User perspective (coder) (12Mbps) and high

* Under the hood
— Device side

— Host side

* Achieving high performance

3/30/2012

« Up to USB 2.0 — full

(480Mbps) speed

* USB 3.0 super speed
(5Ggbs)

yo\tage

Data-
Ground-, Data* | power (svDC) oW @\

aifferen™
S\g,f‘a\

|
Receive - - Transmit +
Receive + — Transmit -
Ground

USB definitions USB on PCB

* IN means towards the host (the PC)

* OUT means towards the device (uC) W

L o+

|USB |

USB user perspective (as coder)

#include "usb_ctask.n"

#if USE_DE\'ICE_FERTURE == ENABLED
#include "usb_drv.h"

#include "usb_descriptors.h”
#include "usb_standard request.hr
#include "device task.n"

#endif

Device side — Include USB driver Main |00p
static U32 s3of ent:
static US in_data length;
static U8 in_buf[EP_SIZE_TEMP1]: int main() {
static U out_data_length; usb task inic():
static U2 out_buf[EP_SIZE TEMP2]; I - -
Il #1f USE_DEVICE FEATURE == ENABLED
! @brief This fumoticn initializes device task init():
void device task init(void) { #endif
sof_cnt = 0; .
in data_lengen = 0; while (TRUE) {
out_data_length = 0; usb_task():
Usb_enable sof_interrupt();
#if USB_DEVICE FEATURE == ENABLED

void usb_sof_action(void) {
gpio_local tgl _gpio_pin(AVR32_PIN PALO):
S0f_cnt4+;

device_task();
#endif

void device task(void) {
First, check the device enumeration state
if (!Is_device_enumerated())

e IN direction

ption.
uffer and

ms a loopback transmis:
endpoint is stored i

Load the IN endpoint with the contents of the RAM buffer

if (Is_usb_in_ready(EP_TEMP_IN)) {
gpic_local_tgl_gpic_pin(AVR32_PIN_PR11);
read ADC and store to buffe:
U16 adcval = get_adc_value():
in buf[0] = OxDE;
in buf[1] = OxAD;
in buf[2] = OxFF & (adcval >> &);
in buf[3] = OXFF & (adeval >> 0);
in_data_length = 4;
Usb_reset_endpoint_fifo_access (EP_TEMP_IN):
usb_write_ep_txpacket (EP_TEMP_IN, in buf, in data_length, NULL);
in_data_length = 0;
Usb_ack_in_ready_send (EP_TEMP_IN) ;
H
= USB
o side
HSB
Slave Interface| endpoints
- - I I and FIFOs

HSB1
] veus
| User Intartac t D iy
\—I usB20

e L
Intarrupt USB It ts L
Controlier o [] use0
Gontroter

- [] use veor

Power USB GCLK @ 48 MHz

System Clock; USB Clack
Domain: Domain

Endpoints — multiple virtual channels

Pipe/Endpoint Mnemonic Max. Size Max. Nb. Banks | DMA Type
0 PER Hbytes 1 N [ool |
—
1 PEP1 84 bytes 2 Y | Isochronous/Bulk/Interr
2 PEP2 84 bytes 2 Y | Isochronous/Bulk/Interr
3 PEP3 64 bytes 2 Y | Isochronous/Bulk/Interr
4 PEP4 84 bytes 2 Y | Isochronous/Bulknterr
5 PEPS 256 bytes 2 Y | Isochronous/Bulknterr
8 PEPS 256 bytes 2 Y | Isochronous/Bulk/Inter

Can be double buffered

OUT direction

g in the OUT endpoint,

in the RAM buffer

if (Is usb_out_received (EB_TEMP CUT)) {
gpio_local_tgl_gpio_pin(AVR3Z_PIN_PA12):

Usb_reset_endpoint_fifo_access (EP_TEMP_OUT);
out_data_length = Usb_byte_count (EP_TEMP_OUT) ;

3/30/2012

usb_read_ep_rxpacket (EP_TEMP_OUT, out_buf, out_data_length, NULL):

Usb_ack_out_received free (EP_TEMP_OUT) ;

update PWM:
set_rgb(out_buf[l], ocut_buf[2], out_buf[3]);

USB interrupts (you don’t worry about them!)

Double-buffered transfers can increase continuity
\CH
-] [+]
N Hw |
sw | '\nl sw
L L
N\
FIFOCON write data to CPU w” write data to GPU QV‘LJ write data to CPU
BANK 0 BANK 1 BANKD

* When the bank is empty, TXINI and FIFOCON are set, what triggers an EPnINT interrupt if
TXINE is one.

+ The user acknowledges the interrupt by clearing TXINI.
* The user writes the data into the current bank by using the USB Pipe/Endpoint nFIFO Data

virtual segment (see "USB Pipe/Endpoint n FIFO Data Register (USBFIFOnDATA)" on page
483), until all the data frame is written or the bank is full (in which case RWALL is cleared and

the Byte Count (BYCT) field in UESTAN reaches the endpoint size).

+ The user allows the controller to send the bank and switches to the next bank (if any) by
clearing FIFOCON.

Host vs. Device

For the USBB in host mode, the term “pipe” is used instead of
“endpoint” (used in device mode).
A host pipe corresponds to a device endpoint

Client

Software

Communication
Flows

-
-
— f
—

Endpoints

Interface

def main() :

dev = get_device()

try:
dh = dev.open()
dh.claimInterface (IFACE)

rainbow (dh)

dh.releaseInterface ()

del dh

return 0
except

print "no

sys.exc_info()

The key to high performance on host side:
Asynchronous or Overlapped 10

¢ On the host side, an Input-Output (I0) thread manages the
USB 10.

« Multiple buffers (which can be much larger than the device
FIFO size) are submitted to the USB driver / host controller
to be filled by the USB controller.

1. When a buffer is filled, the 10 thread is notified

asynchronously, which wakes it up.

2. The 10 thread processes the buffer, and then gives it back
to the controller. The 10 thread then notifies the main
user code that data is available, e.g. by writing to a
software queue.

* That way, the user doesn’t block waiting for data

* Our pyusb example doesn’t do this yet

3/30/2012

Host side — using pyusb

busses = usb.busses ()
import sys -
import array
import usb
import colorsys
import time

VENDOR = 0Ox0O3eb
PRODUCT = 0x2300
IFACE = 0

EP TN = 0x81
EF_OUT = 0x02

def get device():

for bus in busses:
devices = bus.devices
for deh in devices:
if dev.idVendor == VENDCR and dev.idProduct == PRODUCT:
return dev
return None

usbicent = OL
def usbio(ch, r, g, B):

global usbiocnt
usbiccnt += 1

dout = array.array('E’, [0]1%4%)

dout[0] = OxFF & 0x00
dout[1] = OxFF & (r)
dout[2] = 0xFF & (@)
dout[3] = OxFF & (b)

dh.bulkWrite (EP_OUT, dout.tostring())

if 1:

din = dh.bulkRead(EP_IN, 4)
1 = len(din)

if 1 1= 4:
print “unexpscted bulk read ler 51
else
if usbiocnt % PWMperdADC == O:
ade((din[2] << 8) + din[3])

USB performance

* USB full speed (12Mbps): about 1MBps
* USB high speed (480Mbps): about 40MBps
¢ USB super speed (5Gbps): ??

3/30/2012

ICs for USB

USB full *Many uC. Also FTDI.
speed

UEIERglT:0 " o CypressFX2

! CypressFX2
o I e ﬂ -

speed CPLD logic § A
chip. Writes -/ g

T []

USRI o CypressFX3 1o X2 FIFOs Batphes g
speed =
ftdichip.com

C

CypressFX3 S
l « UC UART — USB USB IN THE FAST LANE

interface; looks
like COM serial
port on host side.

e

* Max speed is only

braY N oensi P ik @ mce XK o4) Ew 12Mbaud for the
Cypress EZ-USB® FX3™ is the next-generation SuperSpeed USB 3.0 peripheral controller that enables developers to UART port
add USB 3.0 device functionality to any system. u nfo rtu nately

EZ-USB FX3 has a fully configurable, General Programmable Interface (GPIF™ II) that can interface with any
processor, ASIC, image sensor, or FPGA. GPIF™ II is an enhanced version of the original GPIF™ in FX2LP,
Cypress's flagship USB 2.0 product. It provides easy and glue-less connetivity to popular industry interfaces such as

