“Gateway” lab exercises

HelloWorld - Making a new project with a module and controlling a
single LED with a button.

Hello lots of Worlds - making a bus to wire all switches to all LEDs;
the UCF (User Constraints File).

. HelloWorldSynchronous - using registers and wires, simulation with
a verilog test fixture; the sensitivity list in always@ in simulation. “If
within a module you have a signal that is on the left hand side of an
assignment within an 'always@(...)' statement, then it needs to be
defined as a register ('reg')”.

. ShiftingTheWorld - synthesizing a shift register with fd D-FlipFlops
using gate level and behavioral level design; register transfer level
(RTL) design; module instantiation; signalconcatenation;
introduction to generate.

. ShiftingManyWorlds - 2d array of shift registers (memory);
simulation exercise.

Counting\Warlds . simnla.arithmetic lhinl,

4/26/2013

“Gateway” lab exercises

Getting to know the hardware and development environment

1. HelloWorld - Making a new project with a module and controlling a
single LED with a button.

2. Hello lots of Worlds - making a bus to wire all switches to all LEDs;
the UCF (User Constraints File).

Very important first experience with synchronous logic

3. HelloWorldSynchronous - using registers and wires, simulation with
a verilog test fixture; the sensitivity list in always@ in simulation.

RESET —>|

3. Hello Synchronous World
Synchronous logic — D flipflop

D - - aQ
On the positive CLOCK edge, D is copied to Q.
= a Reset Q low on the positive edge of RESET

CLOCK

Some
Arithmetic
Operation

Some
Arithmetic
Operation

Some
Arithmetic
Operation

Registers
Registers

Registers

3. Hello Synchronous World

¢ Concepts
— Synchronous Logic
— The Sensitivity List
— Registers
— Clocks
¢ Syntax
always@(...)
posedge

— negedge

— reg

— Revisit the use of begin and end syntax, but this time in the
context of module design

— forever

3. Hello Synchronous World

Synchronous logic with sensitivity list

21 module HelloSynchronousWorld(

2z input CLE,
23 input IN, D
24 output| reg [OUT, Q
D — — Q z5 uu:putOUTBm nQ
Z6 i
L3 z7

" 26 always@ (posedge CLE) begin
=) ouT <= IN:

| 30 CUTEAR <= ~IN:

CLOCK 31 end

32

EE endmodule

No reset here

3. Hello Synchronous World

Sensitivity list, this time with added asynchronous reset

odule HelloS3ynchronousWorld(

input CLK,
input RESET,
input TH, . .
output reg OUT, Rule: If within a
output reg OUTBAR module you have a
i signal that is on the
always@ (pogedyge CLE or posedge RESET) begin eft hand side of an
Eea (il assignment within an
ouUT <= 1'k0; '
OUTEAE <= 1'hi: always@(...)
end statement, then it
else hegin .
o P needs to be defined as
OUTBAR <= ~IN: a register ('reg').
end
end

endmodule

Aside: Lexical Conventions

* Comments
// Single line comment

/* Begins multi-line (block) comment
All text within is ignored
Line below ends multi-line comment
*/
* Number
Sized decimal, hex, octal, binary, e.g. 1’b1="1’, 4’he=1110’
Can include underlines, +,-, e.g. 16’b1111_0011_1100_1101
(for clarity)
Can use unsized when target is unambiguous
* String

“«

Enclose between quotes on a single line"

4/26/2013

RTL (Register Transfer Level) schematic

Technology schematic

Test fixture (aka test bench or TB)

25 jodule HelloSynehronousiorldTh:

Z6

27 /7 Inputs

8 reg CLK;

29 reg IN: -

20 q Define Inputs and Outputs
31 /7 Outputs

3z wire OUT;

33 wire OUTEAR:

349

35 /¢ Instantiate the Unit Under Testc (UUT)

36 HelloSynchronousWorld uut |

37 .CLK(CLE}, . .
38 LN (TN, — M d l l t t t
2o m. odule Instantiation
40 «OUTEAR (OUTEBAR)

41 1

4z

43 initial begin

44 CLK = 0 H H

a5 Sorever #100 CLE = ~cL: Clock Definition
48 end

47

45 initial begin

49 // Initialize Inputs

50 IN = 0;

51

52z £/ Wait 100 ns for global reset to finish

53 #1003

39 LOUT (OUT) , OO UOTE ITIToATTONoTTroTT

40 . OUTEAR [GUTEAR)

a1 Ve

4z

43 initial begin

43 CLK = 0; Py
as forever #100 cis = -ciEs Clock Definition
45 end

47

48 initial hegin

43 /¢ Initialize Inputs

50 N = 0;

51

52 // Wait 100 ns for global reset to finish

53 #100:

54

55 #50 m =

56 | #s0 = o

57 #200 IN = 1:

58 #200 IN = 0;

53 #z0

50 #20

61 20 1

o b0 Test Stimulus
a3 #20

64 #20

85 #20

66 #z0

a7 #20

68 #z0

69 end

FO__encmodule

Aside: Procedural Constructs

¢ Two Procedural Constructs

— initial Statement

— always Statement
* initial Statement : Executes only once
e always Statement : Executes in a loop

* Example:
initial begin always @(A or B) begin
Sum = 0; Sum = A~ B;
Carry = 0; Carry = A & B;
end end

Simulation

4/26/2013

The UCF (user constraints file)

You will need to place one more constraint in your UCF. Place
the following line below your pin assignments.
NET "CLK" CLOCK_DEDICATED_ROUTE = TRUE;
¢ This statement tells the implementation tool that it is ok
that this clock signal originates from a non-clock input.

* Real clocks use dedicated clock driver networks on the
FPGA.

Aside: Verilog directives and system tasks and functions

‘include filename includes a file

defines a string, use it later as e.g. '"NROWS (you

CEiR RS 10 need prepended single backquote)

‘undef NROWS undefines
“ifdef NROWS conditional
‘else “endif if/else

. delays (e.g. #10) are in 1ns units with 2 decimal
tescigtinVioks boints. e.g. 10ps is .01ns)

[System task/function
Sdisplay(“time=%t row=%d",Stime,row)
Smonitor(“time=%t row=%d",Stime,row)

print stuff using printf, e.g. %d %b %h, %f %s %m
same as Sdisplay but when values change

Sstop Pauses and enters debug mode
Sfinish Finishes a simulation and exits the simulation process.
Stime time as 32 bit int
Srealtime time as real
Controls format of %t 10-9 is unit, 2 digits, ns, min

Stimeformat(-9, 2, " ns", 10); field width

Loads the file into a register memory array. The file
must be an ASCII file with values represented in binary
($readmemb) or hex (Sreadmembh). The start and end
address values are optional.

Sreadmemb(“filename”, regarray,start,end)

Verilog primer

Two Main Components of Verilog

¢ Structure (Plumbing, your actual circuit)
— Verilog program build from modules with I/0 interfaces
— Modules may contain instances of other modules
— Modules contain local signals, etc.
— Module configuration is static and all run concurrently
¢ Concurrent, event-triggered processes (behavioral
simulation)
— Initial and Always blocks
— Imperative code that can perform standard data manipulation
tasks (assignment, if-then, case)
— Processes run until they delay for a period of time or wait for a
triggering event

Verilog’s Two Main Data Types

* Nets (e.g. wire) represent connections between things
— Do not hold their value
— Take their value from a driver such as a gate or other module
— Cannot be assigned in an initial or always block

* Reg represents data storage
— Behave like memory in a computer

— Hold their value until explicitly assigned in an initial or always
block

— Never connected to something

— Can be used to model latches, flip-flops, etc., but do not
correspond exactly

— They are shared variables with all their attendant problems

Verilog’s Discrete-Event Simulation

* Basic idea: only do work when something changes
¢ Centered around an event queue

— Contains events labeled with the simulated time at which
they are to be executed

¢ Basic simulation paradigm
— Execute every event for the current simulated time

— Doing this changes system state and may schedule events
in the future

— When there are no events left at the current time instance,
advance simulated time to next soonest event in the
queue

4/26/2013

Verilog’s Four-valued Data

* Verilog’s nets and registers hold four-valued data

01
— Obvious
7
— Output of a disabled tri-state driver
— Models case where nothing is setting a wire’s value
¢ X
— Models when the simulator can’t decide the value
— Initial state of registers
— When a wire is being driven to 0 and 1 simultaneously
— Output of a gate with Z inputs

Four-valued Logic Example

¢ Logical operators work on three-valued logic.
Take this AND gate as example

0o o0— Output 0 if one input

ofo o is 0
1 0 1
0 A Output X if both
7 0 inputs are gibberish

Structural Modeling

Nets and Registers

¢ Wires and registers can be bits, vectors, and
arrays

wire a; // Simple wire
tri [15:0] dbus; // 16-bit tristate bus
reg [-1:4] vec; // Six-bit register

integer imem[0:1023]; // Array of 1024 integers
reg [31:0] dcache[0:63]; // A 32-bit memory

Modules and Instances
* Basic structure of a Verilog module:
module mymod(outputl, output2, ... inputl,

input2);
Verilog convention
lists outputs first

output outputl;
output [3:0] output2;
input inputl;

input [2:0] input2;

endmodule

4/26/2013

Instantiating a Module

Instances of
module mymod(y, a, b);
look like
mymod mm1(y1, al, b1);// Connect-by-position

mymod (y2, al, bl),
(y3, a2, b2); // Instance names omitted

mymod mm2(.a(a2), .b(b2), .y(c2)); // Connect-by-name

Gate-level Primitives

Verilog provides the following:

and nand
or nor
xor xnor
buf not

bufifo notif0
bififl notifl

logical AND/NAND
logical OR/NOR

logical XOR/XNOR
buffer/inverter

Tristate with low enable
Tristate with high enable

Delays on Primitive Instances

¢ Instances of primitives may include delays

buf bi(a, b); // Zero delay

buf #3 b2(c, d); // Delay of 3
buf #(4,5) b3(e, f); // Rise=4, fall=5

buf #(3:4:5) b4(g, h); // Min-typ-max

User-Defined Primitives (UDPs)

¢ Defines gates and sequential elements using a

truth table

¢ Often simulate faster than using expressions,
collections of primitive gates, etc.

¢ Gives more control over behavior with X

inputs

¢ Most often used for specifying custom gate

libraries

A Carry Primitive

primitive carry(out, a, b, c);
\

output out;

input a, b, c;

table
Truth table may

00?:0; |
"——include don't-care (?)

0?0:0; :

200 0, entries

11?:1;
1

Always have exactly
one output

1?1

?11:1;
endtable
endprimitive

A Sequential Primitive

Primitive dff(g, clk, data);

output g; reg q;
input clk, data;
table

// clk dataq new-q
(01) 0:
(01) 1 :
(0x) 1:
(0x) 0 :
(?0) ?:
?(??):
endtable
endprimitive

’

VVO Ry
LLoRRO

// Latcha 0

// Latcha 1

// Hold when d and g both 1
// Hold when d and g both 0
// Hold when clk falls

// Hold when clk stable

Continuous Assighment

¢ Another way to describe combinational function
¢ Convenient for logical or datapath specifications

Define bus widths

wire [8:0] sum;

wire [7:0] a, b; Continuous
. e assignment:
wire carryin; permanently sets the

value of sum to be
i . a+b+carryin
assign sum =a + b + carryin;

Recomputed when a,
b, or carryin changes

4/26/2013

Behavioral Modeling

initial and always blocks

* Basic components for behavioral modeling

initial always
begin begin
... imperative statements ... - Imperative statements ...

end end

Runs when simulation starts Runs when simulation starts

Terminates when control Restarts when control reaches

reaches the end the end
- . Good for modeling/specifying
Good for providing stimulus hardware

Initial and Always

¢ Run until they encounter a delay

initial begin
#10a=1;b=0;
#10a=0;b=1;
end

¢ ora wait for an event

always @(posedge clk) q = d;
always begin wait(i); a = 0; wait(~i); a=1; end

Procedural Assignment
¢ Inside an initial or always block:

sum =a+ b +cin;
LHS RHS

¢ Just like in C language: RHS evaluated and assigned
to LHS before next statement executes

¢ RHS may contain wires and regs
— Two possible sources for data
* LHS must be areg
— Primitives or continuous assignment may set wire values

Imperative Statements

if (select==1) vy=a;

else y=Db;

case (op)
2’b00:y=a+b;
2’b0l:y=a—b;

2’b10:y=a”rb;
default: y = ‘hxxxx;
endcase

For Loops
¢ Aincreasing sequence of values on an output
reg [3:0] i, output;
for(i=0;i<=15;i=i+1)begin
output =1i;

#10;
end

4/26/2013

While Loops
¢ Aincreasing sequence of values on an output

reg [3:0] i, output;

i=0;

while (i <= 15) begin
output =1i;
#10i=i+1;

end

Modeling A Flip-Flop With Always

¢ Very basic: a positive edge-sensitive flip-flop
reg q;
always @(posedge clk)
q=d;
¢ g =d assignment runs when clock rises:
exactly the behavior you expect

Verilog has two types of procedural assignment
Blocking vs. Nonblocking

¢ Blocking (means complete assignment here)
a=b;

¢ Non-Blocking (store RHS and assign at end of step)
a<=b;

¢ Fundamental problem:

— In a hardware synchronous system, all flip-flops sample
(almost) simultaneously on the clock edge

— In Verilog, always @(posedge clk) blocks run in some
undefined sequence

A Flawed Shift Register

This doesn’t work as you might expect:

reg dl, d2, d3; “ f.dz‘- 3

clk
always @(posedge clk) d2 = d1;
always @(posedge clk) d3 = d2;

¢ These run in some order, but you don’t know
which. Because assignments are blocking, they
run in order, and result depends on order.

Non-blocking Assignments

This version does work:

Nonblocking rule:

RHS evaluated when
reg di, d2, d3; assignment runs

always @(posedge clk) d2 <= d1;
always @(posedge clk) d3 <= d2;

LHS updated only after
all events for the current
instant have run

4/26/2013

But Non-blocking Can Behave Oddly Non-blocking Looks Like Latches
. . , ¢ RHS of blocking taken from wir
¢ A sequence of non-blocking assignments don’t S of blocking taken fro es
communicate. a=1; I ”
a b c
a=1; a<=1,
c=b;
b=a; b<=a;
c=b; c<=b; ¢ RHS of non-blocking taken from latch outputs
Blocking assignment: Non-blocking assignment: a<=1, 1 a
a=b=c=1 a=1 b<=a; “ X ”
b = old value of a c<=b;
c = old value of b c
Modeling FSMs Behaviorally
There are many ways to do it:
Bu||d|ng Behavioral Models 1. Define the next-state logic combinationally and
define the state-holding latches explicitly
2. Define the behavior in a single
always @(posedge clk) block
3. Variations on these themes
FSM with Combinational Logic FSM with Combinational Logic
Output o is declared
module FSM(o, a, b, reset); areg because it is module FSM(o, a, b, reset);
output o; assigned L !
reg o; procedurally, not
input a, b, reset; because it holds state
reg [1:0] state, nextState;
always @(a or b or state] Combinational block always @(posedge clk or reset)
case (state) ey if (reset) \

: begin its i _ 9 . N
nextState = a ? 2’b00 : 2’b01; its Inputs , state <= 2'b00; Latch implied by
o=a&b; (Implies state-holding else sensitivity to the clock

end elements otherwise) or reset only
2’b01: begin nextState = 2’b10; o = 0; end state <= nextState;
endcase

FSM from Combinational Logic

always @(a or b or state)

This is a Mealy
case (state) T machine because the
2’b00: begin output is directly
nextState =a ? 2’b00 : 2’b01; —— affected by any
o=a&hb; change on the input
end
2’b01: begin nextState = 2’b10; o = 0; end
endcase

always @(posedge clk or reset)
if (reset)
state <= 2’b00;
else
state <= nextState;

4/26/2013

FSM from a Single Always Block

Expresses Moore

machine behavior:
module FSM(o, a, b);

output o; reg o; Outputs are latched
input a, b; / Inputs only sampled
reg [1:0] state; at clock edges

always @(posedge clk or reset)

if (reset) state <= 2’b00; ggggﬁ;gﬁg used
else case (state) throughout to ensure
2’b00: begin coherency.
state <=a ? 2’b00 : 2'b01;
o<=a&hb; RHS refers to values
end calculated in previous

2'b01: begin state <= 2’b10; o <= 0; end Clock cycle
endcase

Simulating Verilog

How Are Simulators Used?
* Testbench generates stimulus and checks response
¢ Coupled to model of the system
¢ Pair is run simultaneously

Stimulus
Testbench System Model
Response
Result
checker

under test

ertlng TeStbenIG;htgé device
/

module test; Device under test
reg a, b, sel;

—

$monitor is a built-in
event driven “printf”

mux m(y, a, b, sel);

initial begin
Smonitor(Stime,, “a = %b b=%b sel=%b y=%b”,
a, b, sel, y);
a=0;b=0;sel=0; Stimulus generated by
#10a=1: sequence of
#10 sel :'1; assignments and delays
#10b=1;
end

Simulation Behavior

Scheduled using an event queue
* Non-preemptive, no priorities

¢ A process must explicitly request a context
switch

¢ Events at a particular time unordered

Scheduler runs each event at the current time,
possibly scheduling more as a result

4/26/2013

Two Types of Events

¢ Evaluation events compute functions of inputs
¢ Update events change outputs

* Split necessary for delays, nonblocking assignments,

etc. Evaluation event
/ reads values of b and

Update event ——— c, adds them, and

writes new value a<=b+c schedules an update

of aand event

schedules any

evaluation events

that are sensitive

to a change on a

Simulation Behavior

¢ Concurrent processes (initial, always) run until they
stop at one of the following

* #42

— Schedule process to resume 42 time units from now
wait(cf & of)

— Resume when expression “cf & of” becomes true
e @(aorbory)

— Resume when a, b, or y changes
@(posedge clk)

— Resume when clk changes from 0 to 1

Simulation Behavior

¢ Infinite loops are possible and the simulator does not
check for them

¢ This runs forever: no context switch allowed, so ready
can never change

while (~ready)
count = count + 1;

¢ Instead, use

wait(ready);

Simulation Behavior

* Race conditions abound in Verilog

¢ These can execute in either order: final value
of a undefined:

always @(posedge clk) a =0;
always @(posedge clk) a = 1;

Simulation Behavior

¢ Semantics of the language closely tied to
simulator implementation

¢ Context switching behavior convenient for
simulation, not always best way to model

¢ Undefined execution order convenient for
implementing event queue

Verilog and Logic Synthesis

10

4/26/2013

Logic Synthesis

Verilog is used in two ways
— Model for discrete-event simulation
— Specification for a logic synthesis system

* Logic synthesis converts a subset of the Verilog
language into an efficient netlist

 |t’s one of the major breakthroughs in designing
logic chips in the last 30 years

* Most chips are designed using at least some logic
synthesis

Logic Synthesis
Takes place in two stages:

¢ Translation of Verilog (or VHDL) source to a netlist
— Register inference

* Optimization of the resulting netlist to improve
speed and area
— Most critical part of the process
— Algorithms very complicated

Translating Verilog into Gates

¢ Parts of the language easy to translate
— Structural descriptions with primitives
* Already a netlist

— Continuous assignment
 Expressions turn into little datapaths

¢ Behavioral statements the bigger challenge

What Can Be Synthesized

e Structural definitions
— Everything

* Behavioral blocks

— Depends on sensitivity list

— Only when they have reasonable interpretation as
combinational logic, edge, or level-sensitive latches

— Blocks sensitive to both edges of the clock, changes on
unrelated signals, changing sensitivity lists, etc. cannot be
synthesized

User-defined primitives (UDP)

— Primitives defined with truth tables

— Some sequential UDPs can’t be translated (not latches or flip-
flops)

What Isn’t Translated

¢ |nitial blocks
— Used to set up initial state or describe finite testbench
stimuli
— Don’t have obvious hardware component
¢ Delays
— May be in the Verilog source, but are simply ignored
¢ Avariety of other obscure language features

— In general, things heavily dependent on discrete-event simulation
semantics

— Certain “disable” statements
— Pure events

Register Inference
The main trick

— reg does not always equal latch

¢ Rule: Combinational if outputs always depend
exclusively on sensitivity list

¢ Sequential if outputs may also depend on
previous values

11

Register Inference

* Combinational: Sensitive to changes

on all of the variables

regy, it reads
always @(a or b or sel)
géseey :yk; Y is always assigned
¢ Sequential:
always @(d or clk) q onIy assigned when
k) ged — ¢

4/26/2013

Register Inference

A common mistake is not completely specifying a case
statement

¢ This implies a latch when actually you don’t want one:

always @(a or b)
case ({a, b})
2’b00: f= O;

2’b01:f=
f is not assigned

2’b10: f—l /when{ab} 2b11

endcase

Register Inference
The solution is to always have a default case

always @(a or b)
case ({a, b})

f is always assigned

2'b00: f=0;
2’'b01: f=1;
2'b10: f=1;
default: f = 0;
endcase

Inferring Latches with Reset

¢ Latches and Flip-flops often have reset inputs
¢ Can be synchronous or asynchronous

Example: Asynchronous positive reset:
always @(posedge clk or posedge reset)
if (reset)
q<=0;

else q<=d;

Reset is asynchronous here because it is in the sensitivity list

Simulation-synthesis Mismatches

* Many possible sources of conflict

¢ Synthesis ignores delays (e.g., #10), but
simulation behavior can be affected by them

¢ Simulator models X explicitly, synthesis doesn’t

¢ Behaviors resulting from shared-variable-like
behavior of regs is not synthesized
— always @(posedge clk) a =1;

— New value of a may be seen by other @(posedge clk)
statements in simulation, never in synthesis

Compared to VHDL

¢ Verilog and VHDL are comparable languages
¢ VHDL has a slightly wider scope

— System-level modeling

— Exposes even more discrete-event machinery
e VHDL is better-behaved

— Fewer sources of nondeterminism (e.g., no shared variables)
¢ VHDL is harder to simulate quickly
* VHDL has fewer built-in facilities for hardware modeling
e VHDL is a much more verbose language

— Most examples don't fit on slides

12

4/26/2013

“Gateway” lab exercises

ShiftingTheWorld - synthesizing a shift register with fd D-FlipFlops
using gate level and behavioral level design; register transfer level
(RTL) design; module instantiation; signal concatenation;
introduction to generate.

ShiftingManyWorlds - 2d array of shift registers (memory);
simulation exercise.

4. Shitting the world

Gate-level vs. Behavioral

" ou

Sensitivity list, modules, “generate”, “{}” syntax

Gate-level P

Behavioral here is more precisely referred to as "RTL" or Register
Transfer Level description. In it, a circuit's behavior is defined in terms of the
transfer of signals between registers and the logical operations performed
on those signals.

ERNAYAYAYAYAYAYA

o 1 2 3 |4 5 6 T

Make a D flip flop (fd)

Remove the gbar output from previous exercise.

Make top level ShiftRegister

° Example Of top 21 module ShiftRegister|
Z2 input CLE,
level with one 23 input IN,
. . 24 output [7:0] OUT
shift register 25 "
26
27 Hello3vynchronousWorld DO |
25 L.CLE(CLE),
28 CIN(ING
30 LOUT (QUT[0])
31)
32
33
34 endmodule

Describe D FlipFlop with Reset

31 module DTypelRst |

32 input CLE,

33 input IN,

34 input RESET,

S5 output reg OUT
36)i

37

38 alwvaysl (posedge CLE)] begin
El=l if [(RE3ZET)

40 OuT <= 0:
41 else

42 OUT <= IN;
43 end

44

45 endmodule

Use a wire to connect fd’s

e wire [7:0] MyWire;
ouTt

4 8

IN—D Q—LD Q—LD Q—WL—D Q—WLD Q

wo w1

=l

LcLock

13

Use a wire to connect fd’s
¢ wire [7:0] MyWire;

z1 module ShiftRegister |

2z input CLK,
23 input IN,

z4 output [7:0] OUT

25)2

26

27 wire [7:0] W:

28

29 HelloSynchronousWorld DO (.CLK(CLE), .IN{IN), .OUT(V[O]})

30 HelloSynchronousWorld D1 (.CLK(CLE), .IN{W[D]), .OUT(W[1]})

31 HelloSynchronousWorld D2 (.CLK(CLE), .IN{W[1]), .OUT(W[2]})

3z HelloSynchronousWorld D3 (.CLK(CLE), .IN{W[2]), .OUT(W[31})

33 HelloSynchronousWorld D& (.CLK(CLE), .IN(W[3]), .OUT(U[4]) I:
34 HelloSynchronousWorld DS ({.CLK(CLE), .IN{W[4]), .OUT(V[S1})

35 HelloSynchronousWorld D6 (.CLK(CLE), .IN{W[5]), .OUT(V[E]})

36 HelloSynchronousWorld D7 (.CLK(CLE), .IN{W[6]), .OUT(V[71})

37

38 assign OUT = U;

39

40 endrandul e

4/26/2013

Now do same with generate

module Shiftkegister |

input CLE,

inpuc TH,
oucpue [7:0] OUT
):

wite (8:0] ¥ 9

YpeNo = 0; DEypaNo = ©: DEypeNo = DrypeNo + 1)
peInatant 18t ion

endgenecate

maaign OOT = W[A:1):
asaign W[0] = IN: 4

endmadile

HelloSynchronousWorld D (LCLRICLE), . IN(V[DoypeNel), .OUT(¥{DeypeNo+ll)):

Now we will do the same with
behavioral design

A synchronously resetting DType could be described
as:

On the rising edge of the clock, if RESET is '1'

OUT takes the value of '0' OUT takes the value of IN.
"On the rising edge of the clock" describes the
sensitivity list. The "if RESET is '1' then" describes a
conditional statement with two outcomes, and the
remainder of the sentence describes how to deal with
the two outcomes, with the "takes the value of" text
denoting '<=' syntax.

IN—D Q—LD Q—LD Q—LD Q—LD

Now we will do the same with

behavioral design ;

48

Q

b
—p
—p
—p

21 module ZhiftRegBehawe |

ZZ input CLE,
H H 23 input IN,
* Will synthesizeto 73 etput [7:0] OUT
exact same as our 25 Vi
. 26
gate |eVe| dESIgn 27 reg [7:0] DTypes:
’ 28
but C_Ioesn t 29 alvaysl (posedge CLK) begin
requ|re us to 30 LTypes[7] <= DTypes[6]:
. . 31 DTypes[6] <= DTypes[5]:
define the D-f|lp iz DTypes[5] <= DTypes[4]:
ﬂ| 33 DType=s[4] <= DTypes[3]:
p. 34 DTypes[3] <= DTypes[Z]:
H 35 DType=[2] <= DTypes[1]:
* Thereis a.short‘er e PTypesl1] <= DTepec(o] .
way to write this 37 DTypes[0] <= IN;
. 3s end
using 39
Concatenation 40 assign OUT = DTypes:
41

42 endmodule

Concatenation example

ERVAYAYAYAYAYAYA

o 1 2 3|4 5

7

21 module ShiftRegBehave |

22 input CLE,

Z3 input IN,

24 output [7:0] OUT

z5 1z

Z6

27 reg [7:0] DTypes:;
25

z9 alwaysh (posedye CLE)
30 DTypes <= {DTypes[6:0], IN};
31

32 as=ign OUT = DTypes:
33

34 endmodule

14

4/26/2013

“Gateway” lab exercises

ShiftingTheWorld - synthesizing a shift register with fd D-FlipFlops
using gate level and behavioral level design; register transfer level
(RTL) design; module instantiation; signalconcatenation;
introduction to generate.

ShiftingManyWorlds - 2d array of shift registers (memory);
simulation exercise.

5. Shifting many worlds

(simulation-only exercise)

EAYAYAYAYAYAYA!

o|l1|2|3|la|s5|6]|7

“Gateway” lab exercises

CountingWorlds - simple arithmetic, multiplexing.

TimingTheWorld - a second-counter watch using two counters, one
clocking the other, both up/down with enable.

DecodingTheWorld - Number representation; 7-segment

display decoder (see BASYS2 manual). See 7seg for the code for this
exercise.

TimingTheWorldInDecimel - multiple counters, using generics to
instantiate modules with parameters; revisit generate.

6. Counting the world
Arithmetic, multiplexing, +/-, if/else

On the rising edge of the signal from the Button, if the control
signal from the slide switch is '1' then the number stored in the
register takes the value of the number stored in the register plus
one. Else then the number stored in the register takes the value
of the number stored in the register minus one.

BUTTON

.

7. Timing the world

Using on-board clock (instead of switch)
Multiplexing

COUNT _ENABLE

26-Bit Countar 4
I

LEDS
If {26-Bit Counter == 50,000,000}
EM <=1

“en<aq, | LogicBlock

COUNT _CONTROL

ol

8. Decoding the world

¢ Combinational logic, Karnaugh maps
¢ Module reuse with wrappers

O [
(o ol
O
i |
0
Y] |
o]
Ty

15

Preview of coming exercises
7. Timing the world
8. Decoding the world (combinational logic)
9. Timing the world in decimal
10. Coloring the world (VGA interface)
11. The world of state machines (important!)
12. The world of linked state machines

13. The snake game e e

4/26/2013

[asiar st [|

B [Feavaption Saate st |

“Gateway” lab exercises

10. ColourTheWorld - parameters in generics; VGA display control to
generate sync signals and RGB colors (see BASYS2 manual).

. WorldOfStateMachines - making state machines using sequential
and combinational blocks (switch/case statements) and using ROM
modules (Sreadmemb).

1

=

12. WorldOfLinkedStateMachines - multiple state machines linked by a
master state machine.

13. Snake - a complete snake game.

16

