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Abstract—This paper describes CAVIAR, a massively par-
allel hardware implementation of a spike-based sensing–pro-
cessing–learning–actuating system inspired by the physiology of
the nervous system. CAVIAR uses the asychronous address–event
representation (AER) communication framework and was de-
veloped in the context of a European Union funded project. It
has four custom mixed-signal AER chips, five custom digital
AER interface components, 45k neurons (spiking cells), up to
5M synapses, performs 12G synaptic operations per second, and
achieves millisecond object recognition and tracking latencies.
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I. INTRODUCTION

B RAINS perform powerful and fast vision processing in a
way conceptually different from that of machine vision

systems. Machine vision systems process sequences of still
frames from a camera. For performing scale- and rotation-in-
variant 3-D object recognition, for example, sequences of
computationally demanding operations need to be performed
on each acquired frame. The computational power and speed
required for such tasks make it difficult to develop real-time
autonomous systems for such applications.

On the other hand, vision sensing and object recognition in
brains are performed without using the “frame” concept, at least
not in the usual sense of implying a fixed-rate sequence of still
images. Throughout this paper, we intentionally avoid the use
of the expression “image processing,” because in our hardware
technology, there never is an “image” or a “frame,” but rather a
continuous flow of visual information in the form of temporal
spikes.

The visual cortex is structured as a sequence of layers (8–10
layers in the human cortex [1], [13]), starting from the retina,
which does its own preprocessing in a more compact and analog
architecture. Although cortex has massive feedback and recur-
rent connections, it is known that a very fast and purely feed-
forward recognition path exists within the ventral stream of the
visual cortex [1], [2]. Here we exploited this feedforward path
concept to build a fast vision recognition system. A concep-
tual block diagram of such a cortically inspired feedforward
hierarchically structured autonomous system for sensing/pro-
cessing/decision–actuation can be seen in Fig. 1(a) [1]–[11].
The pattern of connectivity in cortex follows a basic structure:
each neuron in a layer connects to a “cluster of neurons” or “pro-
jective field” in the next layer [12], [13].

In most cases, these projective fields can be approximated by
computing 2-D convolutions. A single layer of a single con-
volution kernel can detect and localize a preprogrammed or
prelearned object, independent of its position. Using multiple
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kernels of different sizes and rotations can make the compu-
tation scale and rotation invariant. Multilayered convolutional
networks are capable of complex object recognition [3]–[8].

Spiking neurons receive synaptic input from other cells in the
form of electrical spikes, and they autonomously decide when
to generate their own output spikes. Hardware that combines
spike-based multineuron modules to compute projective fields
can enable powerful and fast frame-free vision processing. If the
components generate short-latency meaningful, nonredundant
spikes, then spike-based systems can efficiently compute “on-
demand” compared to conventional approaches. The processing
delay depends mainly on the number of layers, and not on the
complexity of objects and shapes to be recognized. Their latency
and throughput are not limited by a conventional sampling
rate.

In recent years, significant progress has been made towards
the understanding of the computational principles exploited by
visual cortex. Many artificial systems that implement bioin-
spired software models use biological-like (convolution-based)
processing that outperforms more conventionally engineered
machines [3]–[11], [14]–[17]. However, these systems gen-
erally run at extremely low speeds because the models are
implemented as software programs on conventional computers.
For real-time solutions, direct hardware implementations of
these models are required. However, hardware engineers face
a large hurdle when trying to mimic the bioinspired layered
structure and the massive connectivity within and between
layers. A growing number of research groups worldwide are
mapping some of these computational principles onto real-time
spiking hardware through the development and exploitation of
the so-called address–event representation (AER) technology.
In this paper, we report on the results of our European Union
consortium project “Convolution AER Vision Architecture for
Real-Time” (CAVIAR), where the largest ever built multichip
multilayer AER real-time frame-free vision system to date has
been developed.

The purpose of this paper is to introduce to various commu-
nities, including computational neuroscience and machine vi-
sion, the promising and effective AER hardware technology that
allows the construction of modular, multilayered, hierarchical,
and scalable (visual) sensory processing learning and actuating
systems. Throughout this paper, we will illustrate the power and
potential of the AER hardware technology through the demon-
strator assembled in the CAVIAR project.

The AER is a spike-based representation technique for
communicating asynchronous spikes between layers of neurons
in different chips. The spikes in AER are carried as addresses of
sending or receiving neurons on a digital bus. Time “represents
itself” as the asynchronous occurrence of the event. AER was
first proposed in 1991 by Mead’s Lab at California Institute
of Technology (Caltech, Pasadena) [24]–[28], and has been
used since then by a wide community of hardware engineers.
Unarbitrated and simpler event readout have been used [29],
[30], and more elaborate and efficient arbitrated versions have
also been proposed, based on winner-take-all (WTA) [31],
or the use of arbiter trees [32], which have evolved to row
parallel [33] and burst-mode word-serial [34]–[36] readout
schemes by Boahen’s Lab. The AER has been used in image

and vision sensors, for simple light intensity to frequency
transformations [38], time-to-first-spike codings [40]–[42],
foveated sensors [43], [44], spatial contrast sensors [23],
[45], temporal intensity difference [39] and temporal contrast
sensors [19], [20], and motion sensing and computation systems
[46]–[50]. AER has also been used for auditory systems
[51]–[53], competition and WTA networks [54]–[56], and
even for systems distributed over wireless networks [57]. For
AER-based 2-D convolution, Vernier et al. [58] and Choi et al.
[59] reported on 2-D convolution chips with hard-wired elliptic
or Gabor-shaped kernels for orientation extraction. AER has
made it feasible to emulate large scale neurocortical-like
multilayered realistic structures since the development of
scalable and reprogrammable kernel 2-D convolution chips,
either with some minor restrictions on symmetry [60], or
without any restrictions on shape or size [18]. Of great
importance for the spread and success of AER systems has also
been the availability of open-source reusable silicon IP [37], a
better understanding by the community of asynchronous logic
design, and the development of conventional synchronous
interfacing logic and computer interfaces [61]–[64].

In CAVIAR, an AER infrastructure was developed to support
a set of AER modules (chips and interfaces) [Fig. 1(b)] that are
connected in series and parallel to embody the abstract layered
architecture in Fig. 1(a). The following modules were devel-
oped: 1) a temporal contrast retina (motion sensing camera)
chip; 2) a programmable kernel 2-D convolution processing
chip; 3) a 2-D WTA object chip; 4) spatio–temporal processing
and learning chips; 5) AER remapping, splitting, and merging
field-programmable gate array (FPGA)-based modules; and
6) computer–AER interfacing FPGA modules for generating
and/or capturing AER. These modules were then used for
building a multilayer artificial vision demonstrator system for
detecting and tracking balls moving at high speeds.

The overall architecture of the CAVIAR vision system is il-
lustrated in Fig. 1(b) and in more detail in Fig. 13. Moving
objects in the field of view of the retina cause spikes. Each
spike from the retina causes a splat of each convolution chip’s
kernel onto its own integrator array. When the integrator array
pixels exceed positive or negative thresholds they in turn emit
spikes. In the CAVIAR system experiments, we generally used
circular kernels such as the ones in Fig. 3(c) and (d), which de-
tect circular objects of particular sizes. The resulting convolu-
tion spike outputs are noise filtered by the WTA object chip.
The WTA output spikes, whose addresses represent the loca-
tion of the “best” circular object, are fed into a configurable
delay line chip that spreads time into space. This spatial pat-
tern of temporal delayed spikes is then learned by the learning
chip. The WTA spikes also control a mechanical or electronic
tracking system that stabilizes the programmed object in the
field-of-view center.

The rest of this paper is structured as follows. Section II
describes the temporal contrast retina, Section III the pro-
grammable kernel 2-D convolution chip, Section IV the 2-D
WTA chip, Section V the learning chips, Section VI the
different interfaces, and finally, Section VII describes the com-
plete CAVIAR vision system and shows experimental results.
Section VIII concludes the paper and gives future outlooks.
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Fig. 1. CAVIAR system overview. (a) A bioinspired system architecture performing feedforward sensing � processing � actuation tends to have the following
conceptual hierarchical structure: 1) a sensing layer; 2) a set of low-level processing layers usually implemented through projection fields (convolutions) for feature
extraction and combination; 3) a set of high level processing layers that operate on “abstractions” and progressively compress information through, for example,
dimension reduction, competition, and learning; 4) once a reduced set of signals/decisions is obtained they are conveyed to (usually mechanical) actuators. (b)
The CAVIAR system components and multilayer architecture; an example output of each component is shown in response to the rotating stimulus and the basic
functionality is illustrated below each chip component.

TABLE I
TEMPORAL CONTRAST VISION SENSOR PROPERTIES ADAPTED FROM [20]

II. AER TEMPORAL CONTRAST RETINA

The temporal contrast silicon retina is an asynchronous vi-
sion sensor that emits spike address–events (AEs) (Fig. 2 and
Table I) [19], [20]. Each AE from the chip is the address of a
pixel and signifies that the log intensity at pixel changed by an
amount since the last event from that pixel. is a global event
threshold that we typically set to about 15% contrast. In addi-
tion, one bit of the address encodes the sign of the change (ON

or OFF). This representation of “change in log intensity” gen-
erally encodes scene reflectance change. The compressive log-
arithmic transformation in each pixel allows for wide dynamic
range operation (120 dB, compared with for example, 60 dB
for a high-quality traditional image sensor). This wide dynamic

TABLE II
CONVOLUTION CHIP PROPERTIES

range means that the sensor can be used with uncontrolled nat-
ural lighting. The asynchronous response property also means
that the events have a latency down to 15 s with bright lighting
and typically about 1 ms under indoor illumination, resulting in
an effective frame rate of typically several kilohertz. The tem-
poral redundancy reduction greatly reduces the output data rate
for scenes in which most pixels are not changing. The design of
the pixel also allows for unprecedented uniformity of response:
the mismatch between pixel contrast thresholds is 2.1% con-
trast. The event threshold can be set down to 10% contrast, al-
lowing the device to sense natural scenes rather than only artifi-
cial high-contrast stimuli. The vision sensor also has integrated
digitally controlled biases that greatly reduce chip-to-chip vari-
ation in parameters and temperature sensitivity [21].
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Fig. 2. Temporal contrast silicon retina vision sensor. (a) Silicon retina USB2
system. The vision sensor with its lens and USB2.0 interface. (b) Chip micro-
graph. A die photograph labeled with the row and column from a pixel that
generates an event with �, �, type output, where type is ON or OFF. (c) Simpli-
fied pixel core schematic that responds with events to fixed-size changes of log
intensity. (d) Principle of operation. How the ON and OFF events are internally
represented and output in response to an input signal. Figure adapted from [20].

III. AER PROGRAMMABLE KERNEL 2-D CONVOLUTION CHIP

The convolution chip is an AER transceiver with an array
of event integrators, already reported elsewhere [18]. Table II
summarizes the chip performance figures and specifications. For
each incoming event, integrators within a projection field around
the addressed pixel compute a weighted event integration. The
weight of this integration is defined by the convolution kernel
[18], [60]. Each incoming event computation splats the kernel
onto the integrators.

Fig. 3(a) shows the block diagram of the convolution chip.
The main parts of the chip are as follows.

1) An array of 32 32 pixels where each pixel contains a
binary weighted signed current source and an integrate-
and-fire signed integrator. The current source is controlled
by the kernel weight read from the RAM and stored in a
dynamic register for each input event.

2) A 32 32 kernel static RAM where each kernel weight
value is stored with signed 4-b resolution.

3) A digital controller that handles all sequence of operations.
4) For each incoming event, a monostable generates a pulse of

fixed duration that enables the integration simultaneously
in all active pixels.

Fig. 3. Convolution chip. (a) Architecture of the convolution chip. (b) Mi-
crophotograph of fabricated chip. (c) Kernel for detecting circumferences of
radius close to four pixels and (d) close to nine pixels.

5) An -neighborhood block that performs a displacement of
the kernel in the direction.

6) Arbitration and decoding circuitry that generate the output
AEs and which uses Boahen’s burst mode word parallel
AER [33].

The chip operation sequence is as follows.
1) The digital control block stores the address of an

incoming event and acknowledges reception of the event
through the and signals.

2) The control block computes the -displacement that has to
be applied to the kernel and the limits in the addresses
where the kernel has to be copied.

3) The control block copies the kernel from the kernel RAM
row by row to the corresponding rows in the pixel array.

4) The control block activates the generation of a monostable
pulse. This way, in each pixel a current weighted by the
corresponding kernel weight is integrated during a fixed
time interval.

5) Kernel weights in the pixels are erased.
A pixel (Fig. 4) contains two digitally controlled pulsing

current sources (pulsing CDAC) which provide a current pulse
of fixed width [equal to the width of the signal “event pulse”
coming from the monostable in Fig. 3(a)] and amplitude de-
pendent on the kernel weight stored in the dynamic register
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Fig. 4. Simplified block diagram of convolution chip pixel.

“weight” in Fig. 4. Depending on the combination of kernel
weight sign and input event sign, the current pulse has to
be positive (provided by CDACp) or negative (provided by
CDACn). The current of each CDAC is proportional to a locally
trimmable current ( or ) to compensate for interpixel
mismatches. Calibration values are loaded from an external
source over a serial interface. Current pulses are integrated
onto a capacitor, whose voltage is monitored by two compara-
tors. If an upper (lower) threshold is reached, the
pixel sends a positive (negative) output event, and resets the
capacitor voltage to the intermediate resting level. This event is
arbitrated and decoded in the periphery of the chip. In parallel,
all pixels receive a periodic signal “forgetting pulse” which
discharges (charges) the capacitor voltage to the intermediate
resting voltage if “CapSign” is high (low), by generating fixed
amplitude current pulses at CDACn (CDACp).

Both the size of the pixel array and the size of the kernel
storage RAM are 32 32. The input address space can be up to
128 128 (14 b) and the chip is programmed to receive input
from a part of this space. Fig. 3(b) shows the microphotograph
of the fabricated chip. AER events can be fed-in up to a peak
rate of 50 million events per second (Meps). The chip can gen-
erate output events at a maximum rate of 25 Meps. Input event
throughput depends on kernel size and internal clock frequency.
The event cycle time is given by , where
is the number of programmed kernel lines (from 1 to 32) and

is the internal clock period. The internal clock is tunable
and could be set up to 200 MHz ( 5 ns) before ob-
serving operation degradation although in our setup we gener-
ally used 100 MHz. Maximum sustained input event throughput
can, therefore, vary between 33 Meps for a one line kernel down
to 3 Meps for a full 32 line kernel. Further details are given in
Table II and elsewhere [18].

Each convolution chip can process an input space of up to
128 128 pixels, but can produce outputs for only 32 32
pixels. This is useful for multichip assembly. For example,
Fig. 5 illustrates how an array of 4 4 chips, each with 32 32
pixels, could be used to process a visual input of 128 128
pixels. Each chip stores into internal registers its own limit
coordinates within the total 128 128
pixel space. All chips share the same input AER bus (this is
done in practice using AER splitters). Maximum kernel size
can be 31 31 (i.e., ; see Fig. 5), which means

Fig. 5. Multichip assembly of convolution chips. All chips “see” the same input
space (up to 128� 128 pixels), but each chip can process only 32� 32 pixels.
Each pixel stores its limit coordinates (� ,� , � , and � ). In general,
when an event is received at coordinate �� � � �, up to four chips process it.

that pixels up to 30 positions apart from a chip might need to
be processed by it. For example, in Fig. 5, we can see how an
event with address is processed simultaneously by four
neighboring chips. The output events produced by all chips are
merged on a single AER bus by an external merger.

For the vision system described in Section VII, we assembled
four convolution chips on a single printed circuit board (PCB).
The PCB has one AER input bus connector and one AER output
bus connector. The input bus goes to a 1-to-4 splitter, imple-
mented on a complex programmable logic device (CPLD) chip,
that feeds the input AER ports of the four chips. The chips’
output AER ports connect to a merger circuit, implemented on
another CPLD circuit, whose output goes to the PCB output
AER connector. The four chips can be programmed to “see” the
same input space and each compute a different 2-D filter (con-
volution) on the same 32 32 pixel space, or the four chips can
be programmed to process the same kernel while operating on
an expanded 64 64 pixel space. In Section VII, we used this
latter option, so that the PCB would work as one single convolu-
tion processor of array size 64 64, and maximum kernel size
of 31 31.

IV. AER 2-D WTA CHIP

The AER WTA transceiver chip [66]–[70] is designed to si-
multaneously determine the “what” and “where” of the convo-
lution chip outputs. The “whats” are the best matched features
in the case of multiple convolution chips, each with a different
kernel, and the “wheres” are the spatial locations of these fea-
tures (Fig. 6 and Table III). The WTA chip implements this
feature competition using four populations of spiking neurons
which receive the outputs of individual convolution chips and
computes the winner (strongest input) in two dimensions. First,
it performs a WTA operation on the inputs from a feature map
to determine the strongest input (which codes the location of the
strongest feature in the feature map), and second, it performs a
second level of WTA operation on the sparse feature maps to
determine the strongest feature out of all preprogrammed fea-
tures. The parameters of the network are configured so that it
implements a hard WTA with only one neuron active at a time.
The spike rate of the winning neuron is proportional to its input
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Fig. 6. Layout and architecture of WTA object chip. (a) Architecture and underlying layout of the four populations or quadrants receiving inputs from four
convolution chips. (b) The architecture of one of the quadrants, each with 256 neurons. Notice that (a) does not show the inputs to the global inhibitory neurons 2.

spike rate. The 2-D WTA chip reduces the data flow rate to the
learning chip by preserving only information about the locations
of the best matched features. The learning chip can then, for ex-
ample, track the 3-D movement of an object in space by pro-
gramming the same feature shape at different sizes in the dif-
ferent convolution chips.

The WTA chip has an array of integrate-and-fire neurons
that can be configured into four populations or quadrants of
16 16 neurons or a single population of 32 32 neurons.
Fig. 6(a) shows the network architecture and the underlying
layout of the four population quadrants. Each quadrant as
shown in Fig. 6(b) has 254 excitatory neurons (unfilled circles)
and two global inhibitory neurons. The excitatory neurons
receive external AER inputs representing its feature map from a
convolution chip through four input synapses, which comprise
one excitatory synapse, one excitatory depressing synapse [71],
and two inhibitory synapses1 (only two of the four synapses
are shown for an exemplar neuron in each quadrant in Fig. 6).
The connectivity across the four quadrants can be configured
to enable WTA competition within a feature map (first level
of competition) and across feature maps (second level of
competition). Each excitatory neuron also has two sets of local
non-AER synapses which form the connections to and from
global inhibitory neurons 1 and 2, and a local self-excitatory
synapse. To enable WTA competition within a feature map or
quadrant, the excitatory neurons in that quadrant are configured
to drive their global inhibitory neuron labeled 1 [solid black
circle in Fig. 6(b)], which in return inhibits these excitatory
neurons. To additionally enable WTA competition across
feature maps, the global inhibitory neuron labeled 2 [solid
gray (red) circle in Fig. 6(b)] in a quadrant is excited by the
global inhibitory neurons labeled 1 from the remaining three
quadrants. In return, it inhibits all excitatory neurons within its
own quadrant. The second-level competition works as follows.
The activity of the global inhibitory neuron 1 in each quadrant
reflects the highest input rate to the excitatory neurons within
the quadrant in the case of a hard WTA competition. Thus,

1In the CAVIAR system described in this paper, we only use the excitatory
synapse. The other three synapses were included for other eventual applications.

TABLE III
WTA CHIP SPECIFICATIONS

this neuron will activate the global inhibitory neurons 2 of the
remaining three quadrants the most if its quadrant receives
the highest input rate out of the four quadrants. Hence, it can
indirectly suppress the activity of the excitatory neurons of the
remaining quadrants through their global inhibitory neuron 2.
This computation is discussed in detail in [67].

An on-chip global digital-to-analog converter (DAC) block
allows us to set individual local synaptic parameters for each
neuron by using part of the address space to transmit the DAC
value. This block was also used to decrease the amount of mis-
match across the neurons. The spiking activity of the neurons is
monitored through the addresses of the output AER spikes while
an on-chip scanner [72] consisting of a clocked set of shift regis-
ters allows us to monitor the membrane potentials of the neurons
externally.

During the WTA operation, each excitatory input spike
charges the membrane of the postsynaptic neuron until one
neuron in the array—the winner—reaches threshold and is
reset. All other neurons are then inhibited via the global
inhibitory neuron of its population. Self-excitation provides
hysteresis for the winning neuron by facilitating the selection
of this neuron as the next winner.

Because of the moving stimulus, the network must determine
the winner using a rapid estimate of the instantaneous input
firing rates. The number of spikes that the neuron must integrate
before eliciting an output spike can be adjusted by varying the
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Fig. 7. Block diagram of the delay line chip.

Fig. 8. Block diagram of the learning chip.

Fig. 9. Die photographs of (a) delay line and (b) learning chips.

strengths of the input synapses. The neuron and synapse param-
eters must be programmed appropriately for the incoming input
spike rate to the neurons and the duration of the input so that the
network operates properly as a WTA network. The WTA circuit
can reliably select the winner given a difference of input firing
rate of only 10% if it receives stationary input spike trains with
a regular firing rate. A quantitative analysis of the constraints
on the parameter space in regards to a spiking WTA system re-
ceiving spiking inputs of various statistics is described in [66],
[69], and [70]. These constraints have been derived for the con-
dition of a hard WTA network in the case of both regular and
Poisson input spike trains. Specifications of the WTA chip are
summarized in Table III.

V. AER LEARNING CHIPS

The learning system in the CAVIAR processing chain sup-
plies the ability to learn to classify spatio–temporal patterns rep-
resenting the trajectory of a moving object [73]. It is capable
of both spike-based learning (or spike-timing-dependent plas-
ticity [82]) to learn to classify spatio–temporal spike patterns
and rate-based Hebbian learning to learn spatio–temporal ac-
tivity patterns. This is achieved in a two-chip AER processing

TABLE IV
DELAY LINE CHIP SPECIFICATIONS

system. The first chip expands the time axis of dynamic spatial
patterns into a spatial dimension by simply generating multiple
copies of the pattern at different time delays. In this AER frame-
work, this is realized with a delay line chip. The second chip im-
plements competitive learning to classify spatial patterns. The
patterns may be spike patterns, formed by coincident spikes at
different spatial locations, or activity patterns, formed by coin-
cident average spiking activity at different locations.

A. Expanding Time Into Space

The delay line chip (Figs. 7 and 9 and Table IV) expands time
into a spatial dimension. It is composed of an asynchronous
delay line with 14 080 delay elements (triangles) and 880 ad-
dressable access points. Higher order bits in the address events
determine if one is injecting an event or closing or
opening a switch . Output address events are produced
at points . Thus, the delay line can be programmed to be
clipped at the access points into several delay lines.

Expanding time into a spatial dimension is what we do all the
time as we plot graphs with a time axis. Fig. 16 illustrates this
with the outputs of the retina, convolution, and WTA stages as
they track a circle on a rotating disk. By representing time in
space, the 2-D motion can be represented in a 3-D figure where
the circular motion of the circle’s center forms a spiral. The
result is a snapshot of the circle trajectory within a time window.

B. From Spike-Based to Rate-Based Hebbian Learning

The learning chip (Figs. 8 and 9 and Table V) is an imple-
mentation of a spike-based timing-dependent learning rule. It
contains 32 neurons, each with 64 learning synapses, and an
inhibitory and excitatory nonlearning synapse. In the sense of
spike-timing-dependent plasticity the chip can be tuned to in-
crease synaptic weights when presynaptic spikes precede post-
synaptic spikes within a certain time window. This time window
may be prolonged and then the net behavior of the synapse be-
comes rate dependent, rather than spike timing dependent (given
that the inputs are roughly Poisson distributed spike trains, see,
for example, [73] and [74]). The learning rule as given in [73] is

(1)

This learning rule implicitly normalizes the weight vector to
length , which is a free parameter, that is, any attractor of the
dynamics of has length . Another parameter is the learning
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TABLE V
LEARNING CHIP PROPERTIES

rate . Symbol represents the neuron’s output spike train, de-
fined as a sum of Dirac delta functions. Thus, only changes at
times of postsynaptic spikes. is a dynamic variable that pro-
vides some measure of recent presynaptic activity. It is incre-
mented with every presynaptic spike, decaying with the same
time constant as the membrane potential of the neurons, and
resetting after a postsynaptic spike. It is mainly the time constant

in balance with the weight vector length that determines the
transition from rate-based to spike-based learning behavior.

The on-chip weight storage is implemented with a six-level
static memory cell which can be set so that the stored weight is
weakly driven to the closest of six stable voltage levels within a
few hundred milliseconds [75]. Short-term analog computations
are stored on a capacitor at analog resolution and the result is
only slowly discretized for long-term storage.

C. Competitive Hebbian Learning of
Spatio–Temporal Patterns

In the following setups, the inhibitory synapse of the learning
neurons is configured to receive the outputs from all other neu-
rons, to do global cross inhibition. The neurons will thus op-
erate as classifiers in the manner of a WTA network. Since the
learning rule specifies that weight updates only happen if there
is postsynaptic activity, the learning will also be competitive:
only the winner will adapt its weights to respond even better to
that particular stimulus. Each neuron will thus specialize on a
certain input pattern and win the WTA competition if the input
is closer to its pattern than to any of the other neurons’ patterns.
This results in a learned discretization of an input space with
minimal information loss. The learning chip’s output is then
a compressed representation of the system input that can sim-
plify the task of a higher level supervised learning stage (e.g.,
implemented in software on a computer) to control appropriate
actions as a response to specific situations. This is, however, be-
yond the scope of this paper.

More details about the theoretical background for the learning
chip’s behavior are given in Appendix II and a practical example
with real-world input from the CAVIAR processing chain is de-
scribed in Section VII-D.

The combined two-chip system can classify spatio–temporal
patterns: neurons in the learning chip can become sensitive not
only to spatial patterns, but also to stimulus direction and speed.

VI. AER INTERFACES

When developing and tuning complex hierarchical multichip
AER systems it is crucial to have available proper computer
interfaces for reading AER traffic and visualizing it, for in-
jecting synthesized or recorded AER traffic into AER buses,
and for address transformations or remappings as events travel
between chips. We developed five PCB solutions, all shown in
Fig. 10(a)–(e):

A. PCI-AER

Fig. 10(a) shows the PCI-AER interfacing PCB capable of
sequencing timed AER events out from a computer or vice
versa capturing and time-stamping events from an AER bus
and storing them in computer memory. It uses a Spartan-II
FPGA, and can achieve a peak rate of 15 Meps and 10 Meps
sustained rate, using PCI bus mastering.

B. USB-AER

Fig. 10(b) shows a photograph of the USB- AER board. Its
block diagram is shown in Fig. 11. It is a codesign platform
that does not require a PCI slot and can be controlled through
a USB port. It uses a Spartan II 200 FPGA with a Silicon Labs
C8051F320 microcontroller. Depending on the logic configura-
tion (firmware) loaded into the FPGA, it can perform five dif-
ferent functions: 1) transform a sequence of frames into AER
in real time (video-frames to AER converter, using rate coding)
[80], 2) histogram AER events into sequences of frames in real
time (AER to video-frames converter), 3) remap addresses using
lookup tables (AER mapper), 4) capture and time-stamp events
for offline analysis (AER data logger), and 5) reproduce time-
stamped sequences of events in real time (AER data player).
This board can also work without a USB connection (standalone
mode) by loading the firmware through MMC/SD cards (used in
commercial digital cameras). This PCB can handle AER traffic
of up to 25 Meps between its two AER ports. It also includes a
video graphics array (VGA) display output for visualizing his-
togrammed frames in real time.

The AER remapping capability is the most useful feature for
assembling multimodules AER systems. A block diagram of the
mapping firmware is shown in Fig. 12. This firmware can pro-
duce a sequence of up to eight output events per input event.
These events are stored in the 2-MB SRAM memory of the
board. The memory can be prewritten with the proper lookup
table through USB. These output events are accessed through
simple bit operations of the input events. The mapper is also
able to decide with some probability value if an output event
is produced according to a probabilistic function implemented
with a linear feedback shift register (LFSR).

C. Switch-AER

The third PCB, based on a simple CPLD, is shown in
Fig. 10(c). It splits one AER bus into two, three, or four buses,
and vice versa, merges two, three, or four buses into a single
bus, with proper handling of the handshaking signals.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 8, 2009 at 09:30 from IEEE Xplore.  Restrictions apply. 



SERRANO-GOTARREDONA et al.: CAVIAR: A 45K NEURON, 5M SYNAPSE, 12G CONNECTS/S AER HARDWARE 1425

Fig. 10. CAVIAR interfaces: (a) PCI-AER. (b) USB-AER. (c) Switch-AER. (d) Mini-USB-AER. (e) USB2AER (left: top face, right: bottom face).

Fig. 11. USB-AER codesign PCB block diagram. A Silicon Labs C8051F320
USB microcontroller with SD/MMC support, connected with a Xilinx Spartan
2 FPGA. The FPGA firmware is able to perform complex operations with the
two AER buses, the SRAM memory, and the VGA interface.

D. Mini-USB-AER

Fig. 10(d) is a lower performance but more compact bus-pow-
ered USB interface based on a C8051F320 microcontroller. It
captures and time-stamps events to a computer at peak rates
of up to 100 kilo events per second (keps) and is particularly
useful for portable demonstrations, and the components cost is
less than $20 [22].

Fig. 12. Mapper block diagram: through the USB, the mapping table is stored
in the external SRAM memory and per each input event the control unit (CU)
generates the sequence of up to eight probabilistic output events.

E. USB2AER

The last board, shown in Fig. 10(e), is a bus-powered USB
version of the PCI-AER board. This board supports USB 2.0
high speed, allowing event rates of 6 Meps between the com-
puter and the AER chip both for sequencing and for monitoring
purposes [64].

The next section describes the operation of the CAVIAR
demonstrator system, shown in Fig. 13 where we made exten-
sive use of the AER interfacing PCBs. The USB-AER board
remapped AEs in real time. The USB2AER board is used as an
AER monitor (to visualize reconstructed/histogrammed images
in real time) and for storing time-stamped events in computer
memory for offline analysis.
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Fig. 13. Experimental setup of multilayered AER vision system for ball tracking (final demonstrator of CAVIAR FET project). (a) Block diagram (white boxes
include custom designed chips and gray boxes are interfacing PCBs). (b) Photograph of a setup.

The reconfigurability of the boards was actively used during
the CAVIAR project developments to test, debug, and adjust
each layer of the processing separately, or two by two. For
example, a repetitive input sequence of events is useful for
proper tuning of biases and kernels for testing the convolution
chips. For this, one can use the USBAER board (with AER
data logger firmware) to capture a time-stamped sequence of
events from the retina to a file. One can later reconfigure the
board to act as an input to the convolution chip by repeatedly
reproducing these stored events in real time (by loading the
AER data-player firmware for this functionality). Often, during
the CAVIAR project development, events were recorded in one
lab and reproduced at a different lab. This way one partner
could use the output of a previous block as their input without
having this block physically present in their lab [62], [80].

VII. THE CAVIAR VISION SYSTEM

Using all these building blocks, we assembled the frame-
free spike-based sensing–processing–actuating–learning AER
vision system shown in Fig. 13. A mechanical rotor (1) holds
a rotating white piece of paper with two circles of different ra-
dius and some distracting geometric figures. The vision system
follows the two circles only, and discriminates between the two.
A pair of servomotor driven mirrors changes the point of view
of the AER retina (3), which sends outputs to a monitor PCB
(4), and a mapper PCB (5) before reaching the convolution PCB
with four convolution chips (6). The latter PCB output is sent
through another monitor PCB (7) and mapper PCB (8) to the
2-D WTA “object” chip (9). This output is received by a monitor
PCB (10) which sends a copy to a microcontroller (11) that con-
trols the mirror motors (2) to center the detected circle. Another
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copy of the WTA output is sent to the learning system which
consists of a mapper (12), a delay line chip (13), another mapper
(14), and a learning classifier chip (15), and which learns to clas-
sify trajectories into different classes.

The temporal contrast retina provides an output event space
of size 128 128 pixels. The four-convolution-chip PCB can
process the complete 128 128 retina space, although it would
compute the convolution output for only the central 64 64
pixels. In our setup, we introduced a mapper between the
retina PCB and convolution PCB (block 5 in Fig. 13) to
downsample from 128 128 pixels to 64 64 pixels. This
way, the convolution PCB will provide outputs for the complete
retina visual range. The mapper also eliminates the retina sign bit,
since the convolution stage needs to detect full circumferences.
In the following experiments, we used circular kernels such as
the ones in Fig. 3(c) and (d), which emphasize circumferences
of particular sizes by doing template matching. Using these
kernels continuously is somehow similar to performing circular
Hough transforms [65], which detect the locations of circular
features in the input, except that we use analog graded values
and include negative kernel values for penalizing the absence
of features.

The 64 64 convolution output is fed through a mapper that
subsamples to a 32 32 space for the WTA (object) chip. This
WTA output provides cleaned up coordinates for the center of
the target-size detected circle. This signal is split at this point
into two separate paths: (a) the motor control subsystem and (b)
the learning subsystem.

The motor control subsystem is built using a commercial mi-
crocontroller which acts on two servomotors, each holding one
mirror. One of the mirrors is tilted horizontally while controlled
by the -coordinate of the “object” chip output, and the other
mirror is tilted vertically while controlled by the - coordinate
of the “object” chip output. This way, the coordinate provided
by the “object” chip represents the deviation of the
detected circle from center of the field of view. A proportional
controller (11 in Fig. 13) uses the motor system to zero this error,
thus keeping the target-size circle centered on the field of view
of the WTA.

The object centering can be seen in Fig. 14. The three
subfigures show the outputs captured by the three monitor
PCBs in Fig. 13, when the feedback servo control is enabled
to center the detected object. Monitor PCBs connect to a host
computer through a high-speed USB2.0 connection, sending
AEs at a speed of up to a peak rate of 6 Meps. The jAER
software [22] reads those events, and reconstructs and renders
2-D histograms by collecting events belonging to a time slice
which is programmable. If this time slice is similar to the
monitor refresh rate, one can visualize the reconstructed images
(video) in real time. For high-speed phenomena, one can
configure a time slice of very short duration (down to a few
microseconds) and visualize a slow-motion recorded sequence
of events offline.

Fig. 14(a) shows a histogram reconstructed from the
128 128 retina output captured by monitor PCB (4) in
Fig. 13. White dots represent positive sign events (dark-to-light
transitions) and black dots negative sign events (light-to-dark
transitions), allowing identification of the direction of motion

Fig. 14. The 20-ms snapshot of outputs of vision tracking system. The retina
central point of view is changed dynamically to follow the small circle, which
appears always centered in the field of view.

Fig. 15. Electronic centering. (a) Raw retina output over 1.3 s without cen-
tering. (b) With electronic centering using WTA to steer retina output.

of the geometric figures, which is clockwise in this case.
Fig. 14(b) also shows a histogram image reconstructed from the
64 64 convolution PCB output captured by monitor PCB (7)
in Fig. 13. In this case, the kernel was programmed to detect the
small circle [see Fig. 3(c)]. Positive sign events (white) show
where the small circle is centered, while the negative events
(dark) show where it is not. The convolution output includes
some noise, which is filtered out by the WTA operation. The
convolution output pixels are transformed from size 64 64
to 32 32 (by grouping 2 2 pixels into one) by the mapper
(8) in Fig. 13. Fig. 14(c) also shows the output of the WTA
computing stage, where all noise has been filtered out. The
dark pixels are the local and global inhibitory units for each
quadrant.

We also implemented a fully electronic (without mirrors, me-
chanical parts, or motors) servo system for changing the central
view point. For this system, an extra splitter was inserted at the
retina output. The extra retina output together with the WTA
output were fed to an extra mapper, subtracting. The result is
the same as when using the mirrors, except that now the max-
imum rotating speed of the stimulus is not limited by the timing
constraints of the mechanical components and the object must
remain in the field of view of the fixed retina. Fig. 15(a) shows
the accumulated retina output over 1.3 s without centering and
all three objects rotate around the center of view. Fig. 15(b)
shows the electronically centered retina output. Now the dis-
tractor objects rotate around the centered large circle, which was
programmed into the convolution chip kernels.
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Fig. 16. A 3-D �-� time reconstruction of events captured during a 100-ms
interval with a rotating stimulus of two circles of different radii, rotating at four
revolutions per second. Events are captured from the retina output (small dots),
from the convolution PCB output (circles), and from the WTA output (big stars).

A. The 3-D Reconstruction of Captured Events

For precise timing measurements, we need to visualize cap-
tured events as function of time. To illustrate this, we performed
the same experiment as discussed in Figs. 13 and 14, but this
time using a stimulus with two circles rotating at four revolu-
tions per second and disconnecting the feedback servo mecha-
nism to center one of the circles. Fig. 16 shows the events cap-
tured during a 100-ms time interval, from the retina, convolution
chip, and object chip. This data shows how the retina output is
filtered down by the convolution to a cloud mostly around the
center of the matching input circle, and how the WTA events fur-
ther reduce the data to just events centered on the programmed
object.

B. Spike Output Statistics

From the recorded time-stamped spike information, we can
perform various analysis, for example, measuring the exact sta-
tistical distribution of the outputs from the different chips. This
measured distribution is useful when setting up the parameters
of a chip to process its inputs. For example, since the task of
WTA chip in the CAVIAR system during the visual tracking
task is to localize the optimal location of the desired stimulus,
the known statistical distribution of its inputs helps in the proper
configuration of the parameters of the WTA chip [67]. The sta-
tistics of these spikes are important because the WTA is the first
nonlinear decision making module in the CAVIAR chain. To
determine the actual statistics of the convolution chip, we an-
alyzed its output spike data in response to a disc rotating with
constant velocity in front of the retina (Fig. 16). The convolu-
tion chip contains a matched-filter kernel of one size of a circle.
The output spikes from the convolution chip in this figure indi-
cate the location of the center of the detected kernel in the field
of view. To simplify the subsequent analysis, we transformed
the 2-D convolution chip output into 1-D by considering only
neurons along the stimulus trajectory [Fig. 17(b)]. This trans-
formation is possible since we know the trajectory in this simple
problem. The transformation discards activity from neurons out-
side the trajectory of the stimulus center. These outliers receive
less input than neurons on the trajectory and do not evoke output

Fig. 17. Spatial trajectory of the stimulus center. The stimulus is a disc that
rotates with constant velocity in front of the retina. (a) The convolution stage
contains a matched-filter kernel; its output is a smoothed version of the center of
the object. The gray level gives the spike count for one revolution of the stimulus.
(b) For the analysis, we consider only pixels that fall onto the trajectory of the
stimulus. We masked these pixels with a manually defined region of interest.

Fig. 18. Raster plot of the input spike trains from the convolution chips to
the WTA chip. Input addresses along the trajectory are sorted in the order of
the stimulus movement. Each point marks one spike (every spike train contains
about 20–40 spikes). Data from one revolution of the stimulus disc are shown.

spikes from the WTA. Our analysis focuses on the spatio–tem-
poral estimation of the stimulus position, for which only the neu-
rons with a significant spike input are relevant.

Fig. 18 shows the input spike trains to the WTA neurons along
the stimulus trajectory before alignment, but sorted by their
mean spike time. From this representation, the average travel-
ling time from one neuron to the next can be calculated, by
averaging the difference in the mean time between each pair of
neighboring input channels. By using a time-rescaling method
to convert the nonstationary output of the convolution chip to a
stationary one, subsequent analysis of the homogeneous distri-
bution shows that the outputs are well modeled by a travelling
Gaussian wave with Poisson statistics [67], [68], [90].

1) Reconstruction of Object Position From WTA: We con-
sider how well the WTA network can reconstruct the stimulus
position by requiring each output spike of the WTA to indicate
the actual object position. The object position is discretized in
value to the neuron address and in time to the occurrence of the
output spikes as quantized by the recorded time stamp.
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Fig. 19. Reconstruction of object position from the WTA output spikes. Hor-
izontal axis is time (units in seconds) and vertical axis is neuron number (with
units in pixels).

Fig. 20. Events obtained with a circle of flashing LEDs. (a) The 3-D �-� time
reconstruction of events from the retina, convolution PCB output, and WTA
output, captured during 200 ms. LEDs were flashing with an 80-ms period. (b)
� time projection of one of the transients.

Fig. 19 shows how we can reconstruct the stimulus position
from this asynchronous representation. The ideal output of the
network is an update of the object position as soon as the object
is aligned to a new neuron (dashed staircase). Since the object in
our experiment moves with constant speed, the transition time
from each neuron to the next is constant. In the sparsest rep-
resentation, the network would elicit one spike at each vertical
line of the dashed staircase function. In the CAVIAR data (con-
tinuous staircase), the WTA network elicits more spikes than
one spike per position, as illustrated by the output spike train
of the network at the top of Fig. 19. This leads to switching in
the predicted object position, for example, between neurons 17
and 18. In addition, the output sometimes indicates an incorrect
position, for example, at neurons 18 and 19, or the spike times
are jittered, for example, at neurons 13 and 14.

We determine how much the object position reconstructed
from the output spikes of the WTA network deviates from the
ideal case in both position and time. We call an error in the ob-
ject position a “classification error” if a neuron other than the

Fig. 21. Raster plot and cycle histogram of the activity of all 32 neurons after
random initialization of the weights with learning turned off. Cycle times are
indicated by the vertical dotted lines. Two neurons (9 and 20) are very dominant
and mostly active for more than one cycle. This is a bad representation of the
stimulus that will not allow to determine the stimulus’ position within a cycle.

one aligned to the object position makes an output spike. This
error is derived from a probability distribution. The spike time
of the neuron before or after the ideal point in time is consid-
ered as jitter. This error is normalized by the average time
taken by the ball to proceed between one neuron to the next.
For example, in Fig. 19, 1.2 s/17. Both errors are induced
by the Poisson statistics of the input and the variations in its
parameters. Since both jitter and classification error are interde-
pendent, we use an error measure , which quantifies the pixel
error, and is computed as the area difference between the re-
constructed object location (dashed staircase) and the ideal case
(continuous staircase), normalized to times the number of
neurons (pixels) . The error from this experimental set ob-
tained for one ball velocity is

(2)

which indicates an average error position of slightly better than
a single pixel if one looks at the decision of the network at any
one moment in time. This accuracy is achieved because the av-
erage WTA spike location, combined with its precision timing,
overcomes the quantization and other noise sources.

C. Latency Measurements

To measure the chain processing latency, we stimulated the
system with a circle of flashing light-emitting diodes (LEDs).
The size of the flashing circumference is equal to one of the
kernel sizes in the convolution chips. The LEDs are turned on
and off with a period of 80 ms, and events are captured from
the same three nodes as in Section VII-A. Fig. 20(a) shows the
events captured from these three nodes during a time slice of
200 ms. We see event bursts every 40 ms, which corresponds to
either a transient OFF–ON or ON–OFF of the diodes (here we are
ignoring the sign bit of the retina). Fig. 20(b) shows the -time
projection of one such burst. We can see that the transient output
of the retina lasts around 2 ms (the most dense part). The con-
volution output events start to appear between 0.5 and 1.0 ms
after the initial wavefront of the retina (it needs enough events

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 8, 2009 at 09:30 from IEEE Xplore.  Restrictions apply. 



1430 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 9, SEPTEMBER 2009

to recognize the circle). The WTA stage fires an event with a
delay of around 3 ms with respect to the onset of the convolu-
tion output. Not every convolution output burst produces a WTA
output event [Fig. 20(a)]. In this configuration, the WTA was bi-
ased to produce a reduced number of events (without spurious
or noisy events), so that in the experiment of Figs. 13 and 14,
the mechanical stimulus centering section would receive a clean
control signal with as little noise as possible.

D. Learning in the CAVIAR Demonstrator

In this section, we demonstrate the performance of the
CAVIAR learning chips in achieving unsupervised classi-
fication of phases in a cyclic trajectory [73]. Thus, a com-
pressed/quantized representation of that trajectory is learned,
minimizing information loss.

The spatio–temporal learning classifier was connected to the
WTA stage while the processing chain was configured to track
the larger of two rotating circles. A sequence of the input to the
learning system is depicted in Fig. 16 as a 3-D scatter plot. This
input is projected (downsampled) to 2 2 pixels by combining
all events from one quadrant into a single event stream. This
is a low resolution and without the temporal aspect one could
only hope to classify the WTA output into four categories, since
there are now only four positions in space. However, these 2 2
spike trains are inserted into the delay line chip that is config-
ured correspondingly as four separate delay lines (56 320 delay
elements each). Those delay lines are tapped at three different
delays (approximately 0 s, 200 ms, and 400 ms) and the resulting
2 2 3 spike trains are passed on to the learning chip. There
is now significantly more information that can be categorized
by the learning chip: for example, different speeds and direc-
tions and in our case a higher spatial resolution, as the stimulus
will cause several different trajectory patterns as it crosses be-
tween spatial pixels. The learning chip has been tuned to express
rate-based learning behavior with an approximate time constant
of 200 ms. The task of the learning classifier chip is now to pro-
vide a good representation of at most 32 categories (since there
are 32 neurons) from the repeated spatio–temporal pattern.

After random initialization of the weights, the learning clas-
sifier performs poorly, as expected (Fig. 21). The cyclic motion
(the vertical dotted lines represent the cycle frequency) cannot
easily be deduced from the active neuron outputs: individual
neurons remain exclusively active over several stimulus cycles
and the activity is dominated by two to three neurons. These
were often the same neurons in different experiments, since they
tend to have generally stronger synapses due to transistor mis-
match.

After learning for a few cycles, the situation is improved
(Fig. 22). More neurons (approximately seven to nine) show sig-
nificant activity and they are clearly phase locked with the stim-
ulus. They have become specialized on a spatio–temporal input
pattern that occurs during the cyclic object trajectory. They pro-
vide a richer encoding of the cyclic pattern, representing several
different phases of the motion. Effects of device mismatch that
put some neurons at an initial disadvantage are, thus, partially
countered by learning, although still only 9 of 32 total neurons
show significant activity with these parameter settings. Consid-
ering that there are still only four positions to distinguish (after

Fig. 22. Neuron activity after learning. The activities of several neurons are
reliably phase locked at different phase delays and allow stimulus reconstruction
with a better resolution than the cycle time.

the input space projection) and that the object only moves in one
direction at constant speed, this is in fact a rather good perfor-
mance. One could have expected that there are still only four dif-
ferent input patterns and that maximally four neurons could spe-
cialize on exactly those four patterns, but since this real-world
input is changing its state in a continuous fashion rather than just
assuming four discrete states, some of the neurons have become
selective for transitory states “between” the four positions.

A more quantitative analysis [73] with three test sets of dif-
ferent well-controlled simulated inputs instead of real sensor
data has shown that the chip implementation of the learning al-
gorithm is able to improve information content of the network’s
output by 16%–20%, always close to the theoretical optimum
for these particular test cases.

VIII. CONCLUSION AND FUTURE OUTLOOK

This paper demonstrates the high potential of modular AER
hardware systems. To illustrate this, it demonstrates a multichip
multilayer vision sensing processing and actuating architecture,
configured for fast recognition and tracking of moving circles.

What is unique about the example system presented here is
that it is composed of multistages of AER processing modules
interconnected through multiple independent AER links, mim-
icking the multilayer structure of neural cortex. This approach
allows to feasibly scale up systems by either adding more par-
allel modules in a layer, adding more layers, or even including
recurrent feedback connections.

The CAVIAR system consists of about 45k spiking neurons
and 5M synapses; and it can perform up to 12G connec-
tions/operations per second.2 These metrics are computed as
follows. For processing one 31 31 kernel the convolution
chips need 330 ns per input event. Since there are four chips in
parallel, it yields (4 31 31/330 n ) operations/s. The

2Here “connections/s” represents the traditional neural network (hardware
and software) computational performance figure describing the number of
synaptic connections computed per unit time. Note that this is not equal to
the number of physical events communicated through an AER channel. Our
convolution chips are very efficient in this sense, because for each input event,
they can process up to ��� �� � ��� synaptic connections in 330 ns � �����

connections/s/chip.
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synaptic strengths are 5-b values. For communicating analog
values, one needs several events (assuming rate coding) for
the same synapse between neurons A and B. Therefore, this
figure could also be regarded as representing 12 giga events
per second (Geps). Regarding the 5M synapses, what matters
are the possible connections the system can be configured
to implement. Of course, since this is implemented through
convolutions, the projection fields have the restriction that they
are position independent. The possible synaptic connections
are as follows. From the retina to the convolution chip, there
are up to 3.94M possible con-
nections and from the convolution chip to the WTA there are

1.05M connections, resulting in a total
of approximately 5.2M synapses, but using 6.1k unique valued
synapses. All these figures (number of neurons, synapses, and
eps or connections/s) would scale up linearly by adding more
modules to the system. This is because our up-scaling approach
consists of adding AER modules as well as independent AER
channels [91]. The ultimate bottleneck is the throughput of an
individual AER channel. Splitting AER channels replicates
their traffic while reaching more modules. On the other hand,
merging AER channels increases throughput on the resulting
channel. To avoid channel saturation, this merging should be
done with some care (for example, instead of merging 100
channels and perform a convolution, one can merge them in
groups of ten, do the same convolution with ten independent
modules, and merge the ten convolution outputs).

The CAVIAR system in its present form has drawbacks. The
major ones are the complexity of the hardware setup and the lack
of rapidly configured flexibility. The present components share
a common communication infrastructure and standardized ca-
bling and logic protocols, but not a common configuration in-
frastructure. Each partner had developed their own tools and
hardware and software interfaces for configuring chip biases,
address mappings, and calibration, leading to the requirement
for at least two experienced operators for the setup of the system
and the use of typically two computers to impose the desired
configuration over USB interfaces. The learning capabilities of
CAVIAR are limited by the small numbers of plastic synapses.
In addition, a major unsolved problem in computer science is
the lack of general understanding of how to impose a desired
behavior on interconnected networks of simple computing ele-
ments or how learning should be incorporated efficiently into
the system. Thus, it is difficult to encode known mathemat-
ical signal processing methods or branch-like behavior which
can readily be serially programmed but not configured into the
system’s connectivity.

Spinoff activities from this CAVIAR project are the ongoing
development of fully digital convolution chips [86], application
in real-time robotics [87] and commercialization [88] of the sil-
icon retina, development of tools for behavioral simulation of
future AER systems [89], and the active open-source software
project jAER for real-time event-based procedural processing
of AER sensor data [22], [90].

Still, this real-time hardware implementation of a neurophys-
iological model is far from attaining the same complexity as that
of any brain: it consists of about six orders of magnitude fewer
neurons and about eight orders fewer synapses than a human

brain. It requires slightly more space than a shoe box. Thus, if we
would hypothetically scale it up to synapses, the 100 mil-
lion shoe boxes would easily fill a few good sized warehouses.

Nevertheless, this AER system is a significant step towards
the construction of more complex real-time, and real-world
interactive artificial neural systems. We plan to miniaturize
it by about 3–4 orders of magnitude within the next few
years, by increasing the numbers of synapses and neurons per
AER-module and by integrating more modules into a smaller
physical volume. With present day miniature surface mount
PCB technology and the latest deep submicron complementary
metal–oxide–semiconductor (CMOS) technology, it is quite
realistic to fit about 100 chips of 256 256 neurons each,
with 32 32 synapses per neuron. One such PCB would host
6.5 10 neurons and 6.7 10 synapses. Assuming timing de-
lays similar to those reported in this paper, preliminary results
[91] suggest that these systems could perform sophisticated
object recognition with delays around 100 s. This would
be equivalent to a computing power of 100 chips 6.7 10
synapses/chip/100 s 6.7 10 MAC/s (multiply and accu-
mulates per second), which is 3–4 orders of magnitude above
present state-of-the-art dedicated hardware for high-speed
vision processing (see Appendix I).

With such developments, we will be able to provide a modular
and scalable platform for real-time implementations of neural
models of a really challenging complexity. Coupling this mas-
sive preprocessing power with flexible back-ends of conven-
tional procedural computation will enable solutions to a host of
practical applications.

APPENDIX I
COMPARISON TO CONVENTIONAL FRAME-BASED IMAGE

PROCESSING APPROACHES

Other approaches to image processing are based on a
frame-by-frame acquisition and consequent processing. Let
us distinguish between the sensing step (acquiring an image
frame) and the processing steps (processing the sequences of
frames).

A. Sensing Step

Frames are acquired at a given frame rate , and each pixel
integrates light during a time period . Usually both times are
similar, although the latter has to be at least slightly smaller. For
high-speed images, one can increase frame rate (which renders
an explosion in the number of frames to process afterwards), or
reduce to avoid blurring of fast moving objects (which re-
duces either exposure times or image quality, or results in more
expensive imagers). If one chooses to reduce while keeping
frame rate constant , then there will be informa-
tion missing for a time . This can be a severe limitation
for recognition/tracking of moving objects. On the other hand,
if one keeps , either is too small yielding an exces-
sive number of frames for processing or is too large, yielding
blurred images. In any case, a compromise has to be reached,
and, in either case, one always suffers the physical restriction of
integrating light during a finite time period , thus averaging
light over this time.
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For the sensors in this paper and related work, things are dif-
ferent. Each pixel has an internal light-dependent photocurrent
which is continuous in time. In a luminance retina, it is directly
coded into event frequency [38]. In a spatial [23] or temporal
contrast [20] retina, its derivative is computed continuously and
coded as pixel events. Consequently, as soon as a contrast is de-
tected, events are sent out with very short delays: pixels do not
wait for their frame rate refresh instant. This way, the precise
timing of what is happening in the real world is preserved with
AER frameless vision sensors. This allows to sense visual re-
ality with timings equivalent to conventional cameras acquiring
10 000 frames/s or faster. The retinas developed in the context
of the CAVIAR project are low power ( 10 mW), small area
( 5 mm ), standard CMOS low-cost chips, as opposed to their
high-end counterpart of imagers capable of operating at 10K
frames/s.

B. Processing Steps

There are a number of solutions and products in the market
for performing sophisticated visual object recognition tasks.
All of them are based on sequential frame acquisition, and
consequently suffer from the limitations mentioned above.
Assuming images are acquired with satisfactory quality for
later processing, let us now compare the CAVIAR approach
to other conventional approaches, from the processing point
of view. In the conventional approach, the usual solution
is to perform the high-computation demanding operations
(such as 2-D convolutions) on high-speed DSPs (for example,
TMS320DM6446 DaVinci from Texas Instruments, special
for video applications) or using computers with fast central
processing units (CPUs) and special multimedia-oriented
instructions. DSP TMS320DM6446 [92] can optimistically
process up to 2.4 10 MAC/s (multiply accumulates per
second). This will allow to perform a generic (no symme-
tries) 16 16 kernel convolution on a 256 256 image in 7
ms ( 143 convolutions/s). Other more vision-oriented DSP
chips, such as the DaVinci TMS320DM355 [93], are however
designed for standard consumer video cameras operations like
MPEG compression/decompression, histogramming, resizing,
and autofocus. They do not implement 2-D convolutions di-
rectly, and are not really meant for recognition tasks.

Perhaps the most impressive chip available presently is the
MathStar3 field-programmable object array (FPOA): for ex-
ample, it can process large kernel (16 16, although they must
have symmetry constraints) 2-D convolutions on 256 256
images at a rate of 100 convolutions/frame at 25 frames/s
( 2500 convolutions/s). This is equivalent to 3.8 10
MAC/s. However (and ignoring the restriction on kernel sym-
metry), this approach is not scalable to multiple chips while
maintaining speed.

C. Software Solutions

Commercial computers rely on video graphic cards for per-
forming efficiently vision recognition convolution-based-like
algorithms. Such cards ultimately use special purpose chips
like those discussed above. At present, graphics processing unit

3www.mathstar.com

(GPU) chips are very popular among these cards. Cope et al.
[95] perform a comparison of software using GPU versus CPU
for 2-D convolutions. Performance changes with kernel size.
The equivalent MAC per second can be obtained from [95] by
multiplying the pixel throughput (number of pixels processed
per second) by the number of MAC per pixel (which varies from
4 for a 2 2 kernel convolution to 121 for an 11 11 one): a
state-of-the-art GPU yields 4 10 MAC/s for 2 2 kernels
and 7.3 10 MAC/s for 11 11 kernels, while a Pentium 4 at
3 GHz ranges from 6 10 MAC/s for 2 2 kernels to 1.2
10 MAC/s for 11 11 kernels.

APPENDIX II
COMPETITIVE HEBBIAN LEARNING FOR CLASSIFICATION

Weight vector normalizing competitive Hebbian learning has
been used to achieve principal component analysis (PCA) [76].
One particular implementation of this is Sanger’s rule [77]. It
differs somewhat from the implementation presented here: since
Sanger’s rule implements the inhibitory term into the learning
rule, whereas here the neurons’ activities inhibit each other and
thus, indirectly the learning term. Furthermore Sanger’s rule
achieves ordered PCA because it only introduces partial cross
inhibition, where “higher order neurons” inhibit “lower order
neurons” but not vice versa. Here full cross inhibition, which
has also been suggested, for example, in [78], would lead to un-
ordered extraction of principle components.

The experiments here, however, are set up such that not all
conditions for computing a PCA are met. The input distribution
is not of zero mean, weights and signals can only be positive,
and the cross-inhibition is so strong as to induce “hard” WTA,
where all neurons but the winner are suppressed completely and
the number of neurons is bigger than the dimensionality of the
input space. So how can the resulting behavior be described?

Integrate-and-fire neurons described in terms of signal rates
behave like linear threshold elements [73]

if

if
(3)

where is the neuron’s weight vector, is the input vector, is
the output, is the time constant of the leakage, and is the an-
gular distance between and . This shows that with the weight
vector normalized to the same length for all neurons, the neuron
with the smallest will always win the WTA competition and
thus the input space is carved up into different classes along hy-
perplanes of equal angular distance between the weight vectors.

Hebbian learning will reduce the angular distance between
the input vector and . Thus, the winning neuron will adapt its

closer to . With no competitors and the inputs limited to the
first hyperoctant (only positive input vector elements) a neuron
will tend to move towards the direction of the most dense distri-
bution of long input vectors. When competing with others, it will
move towards dense regions of inputs that are not yet claimed
by another neuron. This behavior is much akin the well-known
learning vector quantization (LVQ) algorithm [94], with the dif-
ference that the weight vectors move according to their angular
distance to the inputs, not their Euclidian distance, and that the
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Fig. 23. Example for learning classification with weight vector normalizing
competitive Hebbian learning.

input space is separated along hyperplanes of equal angular dis-
tance between weight vectors, and not equal Euclidian distance.

An illustration is given in Fig. 23 with a 2-D example.
Weights (multiplied by 100) and inputs are plotted in the
same coordinate system. Twenty different input patterns/vec-
tors are randomly distributed in a limited area (marked with
dots, -coordinates from 40 to 80 and -coordinates from 70
to 110). During learning, these 20 input vectors are presented
repeatedly to the neurons in random order. The initial weight
values (marked with “ ”) lie to the right corner of this input
cluster. With these initial weight values only one neuron (the
one with the weight vector that is closest to the input cluster)
will win the WTA competition, a quite poor classification of
the inputs. Learning is performed according to a rate-based
description of (1) that has been derived in [73]. It is equivalent
to (1) under the assumption that all signals are independent
Poisson spike trains

(4)

is the learning rate (set to 0.0001) and is another parameter
that sets the length for the weight vector normalization (set to
1). Learning moves all three weight vectors towards the cluster
of inputs (dashed lines) and normalizes the weight vectors (the
dotted line is the unity circle around the origin multiplied with
100). After 100 iterations, they reach the normalized states indi-
cated by the small circles. The final classification areas are indi-
cated by the dashed–dotted separation lines (that go through the
coordinate system’s origin). Now the classification/quantization
of the inputs is much more evenly distributed among the three
classes. From an information preservation point of view, this is
a much improved classification. Quantization always leads to
information loss but if the classes occur with equal probability,
the information content of the quantized signal is maximized.

To summarize, the weight vector normalizing competitive
Hebbian learning employed on the CAVIAR learning chip
attempts to assign all input patterns it experiences evenly to
its WTA neurons to obtain a classification/quantization of the
inputs trying to preserve as much information as possible. In

the general case, one can expect an improvement of the classi-
fication, but an optimal outcome is not guaranteed. It depends
on the initial condition of the weights and the particulars of the
input distribution, as well as on the nonidealities of the physical
chip implementation, such as mismatch and quantized weight
storage.
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