

Frame-free dynamic digital vision
Tobi Delbruck

Institute of Neuroinformatics, University and ETH Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
tobi@ini.phys.ethz.ch

ABSTRACT — Conventional image sensors produce

massive amounts of redundant data and are limited in
temporal resolution by the frame rate. This paper reviews
our recent breakthrough in the development of a high-
performance spike-event based dynamic vision sensor
(DVS) that discards the frame concept entirely, and then
describes novel digital methods for efficient low-level
filtering and feature extraction and high-level object
tracking that are based on the DVS spike events. These
methods filter events, label them, or use them for object
tracking. Filtering reduces the number of events but
improves the ratio of informative events. Labeling attaches
additional interpretation to the events, e.g. orientation or
local optical flow. Tracking uses the events to track moving
objects. Processing occurs on an event-by-event basis and
uses the event time and identity as the basis for
computation. A common memory object for filtering and
labeling is a spatial map of most recent past event times.
Processing methods typically use these past event times
together with the present event in integer branching logic to
filter, label, or synthesize new events. These methods are
straightforwardly computed on serial digital hardware,
resulting in a new event- and timing-based approach for
visual computation that efficiently integrates a neural style
of computation with digital hardware. All code is open-
sourced in the jAER project (jaer.wiki.sourceforge.net).

Keywords — Neuromorphic, AER, address-event, vision
sensor, spike, surveillance, tracking, feature extraction, low-
latency vision

I. INTRODUCTION

Conventional image processing methods rely on
operating on the entire image in each frame, touching
each pixel many times and leading to a high cost of
computation and memory communication bandwidth,
especially for high frame-rate applications. For example,
a brute force computation of a set of wavelet transforms
can cost thousands of machine instructions in floating
point precision for each pixel of the image. Methods such
as image pyramids [1] or integral image transforms [2]
can reduce this computational cost but still require at
least one pass over all pixels in each frame. In addition,
the limited frame rate limits response latency and
temporal resolution and greatly complicates tracking of
fast moving objects.

We recently achieved a breakthrough in developing a
Dynamic Vision Sensor (DVS) [3, 4] with unprecedented
raw performance characteristics and usability. The DVS
output consists of asynchronous address-events that
signal scene reflectance changes at the times they
occur (Fig. 1). This sensor loosely models that transient
pathway in biological retinas. The output of the sensor is

in the form of asynchronous digital spike address-events
of pixels encoded on a shared digital bus. [5-7].

Fig. 1 DVS characteristics. a) the dynamic vision sensor with lens
and USB2.0 interface; b) a die photograph labeled with components.
Also shown is the row and column from a pixel that generates an event;
c) abstracted schematic of the pixel which responds with events to
fixed-size changes of log intensity; d) how the ON and OFF events are
internally represented and output in response to an input signal.

The DVS was conceived in the CAVIAR project [8],
where it provides the input to a chain of hybrid analog-
digital address-event chips. The main achievement of this
project was the realization of a real time spike-based
system for visual processing consisting of series of feed
forward processing components that model early visual
processing, object classification and tracking. In the
desire to build a system entirely based on neural-like
architectures, the flexibility of procedural computation
was lost and it became very difficult to configure the
system to do anything other that what it was originally
conceived to do.

This concern has led to a series of ongoing
investigations of how the retina events can be digitally
processed by algorithms running on standard hardware

Proceedings of Intl. Symp. on Secure-Life Electronics, Advanced Electronics for Quality Life and Society, Univ. of Tokyo, Mar. 6-7, 2008, pp. 21-26.

http://jaer.wiki.sourceforge.net/

and these algorithms are the main topic of this review.
The main characteristics of these methods are 1) they are
event-driven, which means they operate just on the pixels
or areas of the image that need processing, 2) they are
digital and are efficiently processed on synchronous
digital hardware, 3) they extensively use the precise
timing of the events. This combination of characteristics
leads to a new approach for visual processing that
integrates a biological style of processing with digital
hardware. To encourage community development, all
code is open-sourced in the jAER project [9].

II. DYNAMIC VISION SENSOR

The DVS improves on prior frame-based temporal
difference detection imagers (e.g. [10]) by
asynchronously responding to temporal contrast rather
than absolute illumination, and on prior event-based
imagers because they either do not reduce redundancy at
all [11], reduce only spatial redundancy [12], have large
fixed-pattern-noise (FPN), slow response, and limited
dynamic range [13], or have low contrast sensitivity . The
DVS is particularly suitable for tracking moving objects
and has been used for various applications: high speed
robotic target tracking [14], traffic data acquisition [15,
16], and in internal work for tracking particle motion in
fluid-dynamics, tracking the wings of fruit-flies, eye-
tracking, and rat paw tracking for spinal cord
rehabilitation research.

The main properties of the DVS are summarized in
 Fig. 1 and Table I. Each address-event signifies a change
in log intensity

 log I TΔ > (1)
where I is the pixel illumination and T is a global
threshold. Each event thus means that logI changed by T
since the last event and specifies in addition the sign of
the change. For example, if T=0.1 then each event
signifies approximately 10% change in intensity. This
“relative” property encodes scene reflectance change.
Because this computation is based on a very compressive
logarithmic transformation in each pixel, it also allows
for wide dynamic range operation (120 dB or 6 decades,
compared with e.g. 60 dB for a high quality traditional
image sensor). This wide dynamic range means that the
sensor can be used with uncontrolled natural lighting that
is typified by wide variations in scene illumination. The
asynchronous response property also means that the
events have a very short latency and the timing precision
of the pixel response rather than being quantized to the
traditional frame rate. Thus the “effective frame rate” is
typically several kHz. If the scene is not very busy, then
the data rate can easily be a factor of 100 lower than from
a frame-based image sensor of equivalent time resolution.
The design of the pixel also allows for unprecedented
uniformity of response. The mismatch between pixel
contrast thresholds is 2.1% contrast, so that the pixel
event threshold can be set to a few percent contrast,
allowing the device to sense real-world contrast signals

rather than only artificial high contrast stimuli. The vision
sensor also has integrated digitally-controlled biases that
greatly reduce chip-to-chip variation in parameters and
temperature sensitivity. And finally, the system we built
has a standard USB2.0 interface that delivers time-
stamped address-events to a host PC. This combination
of features has meant that we have had the possibility of
developing algorithms for using the sensor output and
testing them easily in a wide range of real-world
scenarios.

TABLE I TMPDIFF128 DYNAMIC VISION SENSOR SPECIFICATIONS
Functionality Asynchronous temporal contrast

Pixel size um (lambda)
Fill factor (%)

40x40 (200x200)
8.1%
(PD area 151µm2)

Fabrication process 4M 2P 0.35um

Pixel complexity 26 transistors (14 analog), 3 capacitors

Array size 128x128

Die size mm2 6x6.3

Interface 15-bit word-parallel AER

Power consumption 24mW @ 3.3V

Dynamic range >120dB
<0.1 lux to > 100 klux scene illumination
with f/1.2 lens

Photodiode dark
current, 25 C

4fA (~10nA/cm2)
Nwell photodiode

Response latency
Events/sec

15µs @ 700mW/m2

~1M events/sec

Event threshold
matching (1 sigma)

2.1% contrast

III. EVENT PROCESSING

Binning the DVS events into traditional frames
immediately quantizes the time to the frame time and
requires processing the entire frame.

Instead, in the event-driven style of computation, each
event’s location and timestamp are used in the order of
arrival, inspired from the data-driven information
processing occurring in brains. These algorithms also
take advantage of the capabilities of synchronous digital
processors for high speed iteration and branching logic
operations.

The characteristics of these methods will be
demonstrated by a number of examples. These methods
have evolved naturally into the following classes:
• filters that clean up the input to reduce noise or

redundancy,
• labelers that assign additional meaning besides ON

or OFF—additional type information—to the events
such as contour orientation or direction of motion.
Based on these extended types, we can very cheaply
compute global metrics such as image velocity.

• trackers that use events to track moving objects..
The filters and labelers also generally use one or

several topographic memory maps of event times. These
maps store the last event timestamps for each address.

The digital representation of these events allows
attachment of arbitrary annotation. The events start with

Proceedings of Intl. Symp. on Secure-Life Electronics, Advanced Electronics for Quality Life and Society, Univ. of Tokyo, Mar. 6-7, 2008, pp. 21-26.

precise timing and spatial location in the retina and with
an ON or OFF type. As they are processed, extraneous
events are discarded, and as they are labeled they can
gain additional meaning. We attach this meaning to the
event by means of an extended type that is analogous but
not the same as cell type in cortex. Instead of expanding
the representation by expanding the number of cells (as
for the usual view of cortical processing), we instead
assign increasing interpretation to the digital events. We
can still carry along multiple interpretations, but these
interpretations are carried by multiple events instead of
activity on multiple hardware units. For instance, a
representation of orientation that is halfway between two
principle directions can still be represented as near-
simultaneous events, each one signifying a different and
nearby orientation. In addition, this extended event type
information is not limited to binary existence. A motion
event can carry along information about the speed and
vector direction of the motion.

The organization of these events in memory is also
important for efficiency of processing and flexibility of
software development. The architecture we evolved over
three generations of software refactoring is illustrated in
 Fig. 2. Events are bundled in packets. A packet is a
reused memory object that contains a list of event
objects. These event objects are references (in the Java
sense) to structures that contain the extended type
information. A particular filter or processor maintains its
own reused output packet that holds the results. These
packets are reused because the cost of object creation is
much higher (typically a factor of 100) than the cost of
object access. The packets are dynamically grown as
necessary, although this expensive process only occurs a
few times during program initialization. Dynamic
memory (stack) usage is not very high because the reused
packets are rarely allocated and need not be garbage-
collected.

Fig. 2 Event packets and event types. Events are organized in
packets that contain references (pointers) to event objects. These event
objects are subclasses of a basic type. Each subclass elaborates the event
type of the superclass that elaborate the event. These event packets are
processed by event processors, outputting packets of the same type
(filter) or new types (labeler). Some event processors do nothing to
transform the input packet but compute metrics or object properties
from the packet, e.g. global motion, tracked object lists.

Generally, the number of events is reduced by each
stage of processing, so later stages need do less work and
can also do more expensive computations.

In the jAER implementation, and memory buffer is
used between the vision sensor and the processing and
the processing occurs in buffer-sized packets. The latency
can be as long as the time between the last events in
successive packets plus the processing time. These
packets are analogous to frames, but are not the same
thing. A packet can represent a variable amount of real
time depending on the events in the packet. Packets will
tend to carry more identical amounts of useful
information than frames. Our hardware interface (USB)
between the vision sensor and a host PC is built to ensure
that these packets get delivered to the host with a
minimum frequency, typically 100 Hz. Then the
maximum packet latency is 10 ms. But the latency can be
much smaller if the event rate is higher. For example, the
USB chip that we use has hardware buffers of 128
events. If the event rate is 1 MHz, then 128 events fill the
FIFO in 128 us and thus the latency due to the device
interface is about 200 times shorter than the 30 ms per
frame from a 30 Hz camera.

Software infrastructure

The jAER project is implemented in Java and presently
consists of about 300 classes. jAER allows for flexibly
capturing events from multiple hardware sources,
rendering events to the screen (as viewable frames or
other representation, e.g. space-time), and recording and
playing them back. The event-processing algorithms
described here can be enabled as desired by an
automatically-generated software GUI interface that also
allows control of method parameters and handles
persistence. All methods can run in real time at <30%
load on live retina events on a standard 2005 laptop
computer (Pentium M, 2 GHz). Quantitative performance
metrics are shown later.

IV. EVENT FILTERING

Filtering of the event stream transforms events or
discards events that can arise from background activity or
redundant sources. We will describe 3 examples of these
filters.

Background activity filter

This filter removes uncorrelated background activity
(caused on the device by transistor switch leakage or
noise). It only passes activity that is supported by recent
nearby past activity Background activity is uncorrelated
and is largely filtered away, while events that are
generated by moving objects, even if they are only single
pixel in size, mostly pass through. This filter uses a single
map of event timestamps to store its state, i.e., an array of
128x128x2 32 bit integer timestamp values. (131kB).
This filter has a single parameter T which specifies the
support time for which an event will be passed. The steps

Proceedings of Intl. Symp. on Secure-Life Electronics, Advanced Electronics for Quality Life and Society, Univ. of Tokyo, Mar. 6-7, 2008, pp. 21-26.

for each event are as follows:
1. Store the event’s timestamp in all 8 neighboring

pixel’s timestamp memory, overwriting the previous
values.

2. Check if the present timestamp is within T of the
previous value written to the timestamp map at this
event’s location. If a previous event has occurred
recently, pass the event to the output, otherwise
discard it.

(This implementation avoids iteration and branching
over all neighboring pixels by simply storing an event’s
timestamp in all neighbors. Then only a single
conditional branch is necessary.)

Typical snapshot results of the background activity
filter are shown in Fig. 3. This filter is very effective at
removing background activity; using typical DVS biasing
the background rate is reduced from 3 kHz to about
50 Hz, a factor of 60, while the rate of activity caused by
a moving stimulus is unnoticeably affected.

Fig. 3 Example of event-filtering. BackgroundActivityFilter filters
out about 2/3 of the events that lack spatio temporal support, leaving
only the walking fruit fly.

V. LOW LEVEL VISUAL FEATURE EXTRACTION

Low level feature extraction labelers take the event
stream and assign additional interpretation to the events,
e.g., the edge orientation or the direction and speed of
motion of an edge.

Orientation labeler

A moving edge will tend to produce events that are
correlated more closely in time with nearby events from
the same edge. The orientation labeler (Fig. 4) takes ON
and OFF events from the vision sensor and labels them
with an additional ‘orientation type’ that signals their

angle of maximum correlation with past events in the
nearby vicinity. The orientation type can take 4 values
corresponding to 4 orientations separated by 45 degrees.
This labeler uses a topographic memory of past event
times like the background activity filter. There is a
separate map for each retina polarity so that ON events
can be correlated with ON and OFF with OFF. The
orientation labeler parameters are the length of the
receptive field in pixels and the minimum allowed
correlation time. For each each orientation, past event
times are compared with the present event time along the
direction of orientation to compute the degree of
correlation of the present event with past events. Events
that pass the correlation test are output. The correlation
measure can be chosen to be either the maximum time
difference or the average time difference. Smaller time
differences indicate better correlation. An option allows
either outputting all orientations that pass the test or only
the one that is best. The lookups (array offsets) into the
memory of past event times are pre-computed when the
labeler parameters are modified. The steps are as follows:
1. Store the event time in the map of times, pre-

applying a subsampling bit shift if desired.
2. For each orientation, measure the correlation time in

the area of the receptive field
3. Output an event for the best correlation if it passes

the criterion test.

Fig. 4 Example of event labeler: SimpleOrientationFilter annotates
events with the edge orientation. Each panel shows a different
orientation type output.

VI. TRACKING

The basic cluster tracker tracks multiple moving
objects [14, 17]. It does this by using a model of an
object as a spatially-connected rectangular source of
events. As the objects move they generate events. These
events are used to move the clusters. The key advantages
of the cluster tracker are

1. There is no correspondence problem because
there are no frames, so the events between
rendered views still push along the clusters.

Proceedings of Intl. Symp. on Secure-Life Electronics, Advanced Electronics for Quality Life and Society, Univ. of Tokyo, Mar. 6-7, 2008, pp. 21-26.

2. Only pixels that generate events need to be
processed and the cost of this processing is
dominated by the search for the nearest existing
cluster, which is typically a cheap operation
because there are few clusters.

The cluster has a size that is fixed but can be a function
of location in the image. In some scenarios such as
looking down from a highway overpass, the class of
objects is rather small, consisting of cars, trucks and
motorcycles, and these can all be clumped into a single
size. This size in the image plane is a function of height
in the image because the vehicles near the horizon are
small and the ones passing under the bridge are
maximum size. Additionally, the vehicles near the
horizon are all about the same size because they are
viewed head-on. In other scenarios, all the objects are
nearly the same size. Such is the case of looking at
particles in a hydrodynamic tank experiment or falling
raindrops. In other scenarios, objects fall into a distinct
and small set of classes, e.g. cars and pedestrians, but we
have not developed a cluster tracker that can distinguish
these classes.

The steps for the cluster tracker are outlined as
follows. For each packet of events:
1. For each event, find the nearest existing cluster.

1. If the event is within the cluster radius of the
center of the cluster, add the event to the cluster
by pushing the cluster a bit towards the even and
updating the last event time of the cluster.

2. If the event is not close to any cluster, seed a
new cluster if there are spare unused clusters to
allocate. A cluster is not marked as “visible”
until it receives a certain number of events.

2. Iterate over all clusters, pruning out those clusters
that have not received sufficient support. A cluster is
pruned if it has not received an event for a “support”
time.

3. Iterate over all clusters to merge clusters that belong
to the same object. This merging operation is
necessary because new clusters can be formed when
an object increases in size or changes aspect ratio.
This iteration continues until there are no more
clusters to merge and proceeds as follows:

Fig. 5 Object tracking: RectangularClusterTracker tracks multiple
cars from highway overpass.

The tracker has been used as part of a robotic goalie
that achieves an effective frame rate of 550 FPS and a
reaction latency of 3ms with a 4% processor load, using
standard USB interfaces [14]. This combination of
metrics would be impossible to achieve using
conventional frame based vision.

VII. PERFORMANCE

The costs of digital event processing on a host PC
platform are shown in Table II. The measurements were
taken on a single core Pentium M laptop with 2.13GHz
processor, 2GB RAM, Windows XP SP2, running at
“Maximum Performance” settings (800 MHz clock),
running the Java 1.6 virtual machine.

These measurements show that these algorithms
running on a 2005 laptop processor consume from
100-1000 ns per event, so each event requires from a few
hundred to a few thousand machine instructions. These
timings constrain the real time capability. For example, if
the event processing requires 1 us/event, then the
hardware can process 1 million events per second. Since
the maximum event output rate of the present sensor is
about 1 Meps, a 2005 platform can process any input
condition in real time. In fact, at rendering frame rates of
50 Hz, load on a contemporary laptop computer rarely
exceeds 30% even when the most expensive processing is
enabled.

TABLE II PERFORMANCE.
Algorithm us/event

(1024 event packets)
BackgroundActivityFilter 0.1
SimpleOrientationLabler 0.7, RF is 5x1 pixels
RectangularClusterTracker 0.5, 14 objects

VIII. SUMMARY AND CONCLUSION

The main achievement of this work is the development
of novel event-based digital visual processing methods
for low and high level vision. To our knowledge a
general set of methods of utilizing event timing has not
been previously described. These methods can be

Proceedings of Intl. Symp. on Secure-Life Electronics, Advanced Electronics for Quality Life and Society, Univ. of Tokyo, Mar. 6-7, 2008, pp. 21-26.

efficiently realized on fixed-point embedded platforms.
They capture the flavor of biological spike-based
processing in synchronous digital hardware.

None of these methods were conceived before the
vision sensor was built in a form that readily allowed its
everyday use away from the lab bench. It was only after
the device was realized with a convenient (USB)
interface and a large software infrastructure was built to
visualize the data from the sensor that we began to
develop the methods described here for processing and
using the events. Thus this development was stemmed
directly from the availability of a highly usable form of a
new class of vision sensor.

Although these methods have been developed as
software algorithms running on a standard PC platform, it
is clear that many of these algorithms can be
implemented in embedded hardware. One can consider a
range of event-processing platforms (Fig. 6). Using host
PCs for processing reduces development time and initial
cost. The majority of work with AER systems has
focused on the opposite extreme; using AER
neuromorphic chips to process the output from other
AER chips. Our industrial partners are using an
embedded DSP platform, and our partners in the
CAVIAR project are starting to use FPGAs for some
simple event-based processing. This work is very recent
and has substantial room for innovation at many levels. It
has the potential of realization of small, fast, low power
embedded sensory-motor processing systems that are
beyond the reach of traditional approaches under the
constraints of power, memory, and processor cost.

Fig. 6 Event processing hardware platforms. This paper described
methods implemented mostly at the PC level, where development times
are shortest.

IX. ACKNOWLEDGEMENTS

The jAER project is on-going and has many
contributors. Patrick Lichtsteiner has been a key
contributor in building the DVS.

X. REFERENCES
[1] P. Burt and E. Adelson, "The Laplacian Pyramid as a Compact

Image Code," Communications, IEEE Transactions on [legacy,
pre-1988], vol. 31(4), pp. 532-540, 1983.

[2] P. Viola and M. Jones, "Robust real time face detection," Eighth

IEEE Conference on Computer Vision, 2001, pp. 747-747.
[3] P. Lichtsteiner, et al., "A 128×128 120dB 30mW Asynchronous

Vision Sensor that Responds to Relative Intensity Change,"
ISSCC Dig. of Tech. Papers, San Francisco, 2006, pp. 508-509
(27.9).

[4] P. Lichtsteiner, et al., "A 128×128 120dB 15us Latency
Asynchronous Temporal Contrast Vision Sensor," IEEE J. Solid
State Circuits, vol. 43(2), pp. scheduled, 2008.

[5] J. Lazzaro, et al., "Silicon auditory processors as computer
peripherals," IEEE Trans.on Neural Networks, vol. 4(pp. 523-
528, 1993.

[6] M. Mahowald, An Analog VLSI System for Stereoscopic Vision.
Boston: Kluwer, 1994.

[7] K. A. Boahen, "A burst-mode word-serial address-event link-I
transmitter design," IEEE Transactions on Circuits and Systems
I-Regular Papers, vol. 51(7), pp. 1269-1280, 2004.

[8] R. Serrano-Gotarredona, et al., "AER Building Blocks for Multi-
Layer Multi-Chip Neuromorphic Vision Systems," Advances in
Neural Information Processing Systems 18, Vancouver, 2005, pp.
1217-1224.

[9] T. Delbruck, "jAER open source project," 2007,
Available:http://jaer.wiki.sourceforge.net.

[10] U. Mallik, et al., "Temporal change threshold detection imager,"
ISSCC Dig. of Tech. Papers, San Francisco, 2005, pp. 362-363.

[11] E. Culurciello and R. Etiene-Cummings, "Second generation of
high dynamic range, arbitrated digital imager," 2004 International
Symposium on Circuits and Systems (ISCAS 2004), Vancouver,
Canada, 2004, pp. 828-831.

[12] P. F. Ruedi, et al., "A 128x128, pixel 120-dB dynamic-range
vision-sensor chip for image contrast and orientation extraction,"
IEEE Journal of Solid-State Circuits, vol. 38(12), pp. 2325-2333,
2003.

[13] K. A. Zaghloul and K. Boahen, "Optic nerve signals in a
neuromorphic chip II: Testing and results," IEEE Transactions on
Biomedical Engineering, vol. 51(4), pp. 667-675, 2004.

[14] T. Delbruck and P. Lichtsteiner, "Fast sensory motor control
based on event-based hybrid neuromorphic-procedural system,"
ISCAS 2007, New Orleans, 2007, pp. 845-848.

[15] A. Belbachir, et al., "Estimation of Vehicle Speed Based on
Asynchronous Data from a Silicon Retina Optical Sensor," IEEE
Intelligent Transportation Systems Conference ITSC 2006,
Toronto, 2006, pp. 653-658.

[16] M. Litzenberger, et al., "Vehicle Counting with an Embedded
Traffic Data System using an Optical Transient Sensor,"
Intelligent Transportation Systems Conference, 2007. ITSC 2007.
IEEE, 2007, pp. 36-40.

[17] M. Litzenberger, et al., "Embedded Vision System for Real-Time
Object Tracking using an Asynchronous Transient Vision
Sensor," Digital Signal Processing Workshop, 12th-Signal
Processing Education Workshop, 4th, 2006, pp. 173-178.

Proceedings of Intl. Symp. on Secure-Life Electronics, Advanced Electronics for Quality Life and Society, Univ. of Tokyo, Mar. 6-7, 2008, pp. 21-26.

http://jaer.wiki.sourceforge.net/

	Keywords — Neuromorphic, AER, address-event, vision sensor, spike, surveillance, tracking, feature extraction, low-latency vision
	I. Introduction
	II. Dynamic Vision Sensor
	III. Event processing
	Software infrastructure

	IV. event filtering
	Background activity filter

	V. low level visual feature extraction
	Orientation labeler

	VI. Tracking
	VII. Performance
	VIII. Summary and conclusion
	IX. Acknowledgements
	X. References

