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ABSTRACT — Conventional image sensors produce 

massive amounts of redundant data and are limited in 
temporal resolution by the frame rate. This paper reviews 
our recent breakthrough in the development of a high-
performance spike-event based dynamic vision sensor 
(DVS) that discards the frame concept entirely, and then 
describes novel digital methods for efficient low-level 
filtering and feature extraction and high-level object 
tracking that are based on the DVS spike events. These 
methods filter events, label them, or use them for object 
tracking. Filtering reduces the number of events but 
improves the ratio of informative events. Labeling attaches 
additional interpretation to the events, e.g. orientation or 
local optical flow. Tracking uses the events to track moving 
objects. Processing occurs on an event-by-event basis and 
uses the event time and identity as the basis for 
computation. A common memory object for filtering and 
labeling is a spatial map of most recent past event times. 
Processing methods typically use these past event times 
together with the present event in integer branching logic to 
filter, label, or synthesize new events. These methods are 
straightforwardly computed on serial digital hardware, 
resulting in a new event- and timing-based approach for 
visual computation that efficiently integrates a neural style 
of computation with digital hardware. All code is open-
sourced in the jAER project (jaer.wiki.sourceforge.net). 

Keywords — Neuromorphic, AER, address-event, vision 
sensor, spike, surveillance, tracking, feature extraction, low-
latency vision 

I. INTRODUCTION 

Conventional image processing methods rely on 
operating on the entire image in each frame, touching 
each pixel many times and leading to a high cost of 
computation and memory communication bandwidth, 
especially for high frame-rate applications. For example, 
a brute force computation of a set of wavelet transforms 
can cost thousands of machine instructions in floating 
point precision for each pixel of the image. Methods such 
as image pyramids [1] or integral image transforms [2]  
can reduce this computational cost but still require at 
least one pass over all pixels in each frame. In addition, 
the limited frame rate limits response latency and 
temporal resolution and greatly complicates tracking of 
fast moving objects. 

We recently achieved a breakthrough in developing a 
Dynamic Vision Sensor (DVS) [3, 4] with unprecedented 
raw performance characteristics and usability. The DVS 
output consists of asynchronous address-events that 
signal scene reflectance changes at the times they 
occur ( Fig. 1). This sensor loosely models that transient 
pathway in biological retinas. The output of the sensor is 

in the form of asynchronous digital spike address-events 
of pixels encoded on a shared digital bus. [5-7].  

 
Fig. 1 DVS characteristics. a) the dynamic vision sensor with lens 
and USB2.0 interface; b) a die photograph labeled with components. 
Also shown is the row and column from a pixel that generates an event; 
c) abstracted schematic of the pixel which responds with events to 
fixed-size changes of log intensity; d) how the ON and OFF events are 
internally represented and output in response to an input signal. 

The DVS was conceived in the CAVIAR project [8], 
where it provides the input to a chain of hybrid analog-
digital address-event chips. The main achievement of this 
project was the realization of a real time spike-based 
system for visual processing consisting of series of feed 
forward processing components that model early visual 
processing, object classification and tracking. In the 
desire to build a system entirely based on neural-like 
architectures, the flexibility of procedural computation 
was lost and it became very difficult to configure the 
system to do anything other that what it was originally 
conceived to do.  

This concern has led to a series of ongoing 
investigations of how the retina events can be digitally 
processed by algorithms running on standard hardware 
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and these algorithms are the main topic of this review. 
The main characteristics of these methods are 1) they are 
event-driven, which means they operate just on the pixels 
or areas of the image that need processing, 2) they are 
digital and are efficiently processed on synchronous 
digital hardware, 3) they extensively use the precise 
timing of the events. This combination of characteristics 
leads to a new approach for visual processing that 
integrates a biological style of processing with digital 
hardware. To encourage community development, all 
code is open-sourced in the jAER project [9]. 

II. DYNAMIC VISION SENSOR 

The DVS improves on prior frame-based temporal 
difference detection imagers (e.g. [10]) by 
asynchronously responding to temporal contrast rather 
than absolute illumination, and on prior event-based 
imagers because they either do not reduce redundancy at 
all [11], reduce only spatial redundancy [12], have large 
fixed-pattern-noise (FPN), slow response, and limited 
dynamic range [13], or have low contrast sensitivity . The 
DVS is particularly suitable for tracking moving objects 
and has been used for various applications: high speed 
robotic target tracking [14], traffic data acquisition [15, 
16], and in internal work for tracking particle motion in 
fluid-dynamics, tracking the wings of fruit-flies, eye-
tracking, and rat paw tracking for spinal cord 
rehabilitation research.  

The main properties of the DVS are summarized in 
 Fig. 1 and  Table I. Each address-event signifies a change 
in log intensity 

 log I TΔ >  (1) 
where I is the pixel illumination and T is a global 
threshold. Each event thus means that logI changed by T 
since the last event and specifies in addition the sign of 
the change. For example, if T=0.1 then each event 
signifies approximately 10% change in intensity. This 
“relative” property encodes scene reflectance change. 
Because this computation is based on a very compressive 
logarithmic transformation in each pixel, it also allows 
for wide dynamic range operation (120 dB or 6 decades, 
compared with e.g. 60 dB for a high quality traditional 
image sensor). This wide dynamic range means that the 
sensor can be used with uncontrolled natural lighting that 
is typified by wide variations in scene illumination. The 
asynchronous response property also means that the 
events have a very short latency and the timing precision 
of the pixel response rather than being quantized to the 
traditional frame rate. Thus the “effective frame rate” is 
typically several kHz. If the scene is not very busy, then 
the data rate can easily be a factor of 100 lower than from 
a frame-based image sensor of equivalent time resolution. 
The design of the pixel also allows for unprecedented 
uniformity of response. The mismatch between pixel 
contrast thresholds is 2.1% contrast, so that the pixel 
event threshold can be set to a few percent contrast, 
allowing the device to sense real-world contrast signals 

rather than only artificial high contrast stimuli. The vision 
sensor also has integrated digitally-controlled biases that 
greatly reduce chip-to-chip variation in parameters and 
temperature sensitivity. And finally, the system we built 
has a standard USB2.0 interface that delivers time-
stamped address-events to a host PC. This combination 
of features has meant that we have had the possibility of 
developing algorithms for using the sensor output and 
testing them easily in a wide range of real-world 
scenarios. 

TABLE I TMPDIFF128 DYNAMIC  VISION SENSOR SPECIFICATIONS 
Functionality Asynchronous temporal contrast 

Pixel size um (lambda) 
Fill factor (%) 

40x40 (200x200) 
8.1%  
(PD area 151µm2) 

Fabrication process 4M 2P 0.35um 

Pixel complexity 26 transistors (14 analog), 3 capacitors

Array size 128x128 

Die size mm2 6x6.3 

Interface 15-bit word-parallel AER 

Power consumption 24mW @ 3.3V 

Dynamic range >120dB  
<0.1 lux to > 100 klux scene illumination
with f/1.2 lens 

Photodiode dark 
current, 25 C 

4fA (~10nA/cm2)  
Nwell photodiode 

Response latency 
Events/sec 

15µs @ 700mW/m2

~1M events/sec 

Event threshold 
matching (1 sigma) 

2.1% contrast 

III. EVENT PROCESSING 

Binning the DVS events into traditional frames 
immediately quantizes the time to the frame time and 
requires processing the entire frame.  

Instead, in the event-driven style of computation, each 
event’s location and timestamp are used in the order of 
arrival, inspired from the data-driven information 
processing occurring in brains. These algorithms also 
take advantage of the capabilities of synchronous digital 
processors for high speed iteration and branching logic 
operations. 

The characteristics of these methods will be 
demonstrated by a number of examples. These methods 
have evolved naturally into the following classes:  
• filters that clean up the input to reduce noise or 

redundancy,  
• labelers that assign additional meaning besides ON 

or OFF—additional type information—to the events 
such as contour orientation or direction of motion. 
Based on these extended types, we can very cheaply 
compute global metrics such as image velocity. 

• trackers that use events to track moving objects.. 
The filters and labelers also generally use one or 

several topographic memory maps of event times. These 
maps store the last event timestamps for each address. 

The digital representation of these events allows 
attachment of arbitrary annotation. The events start with 
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precise timing and spatial location in the retina and with 
an ON or OFF type. As they are processed, extraneous 
events are discarded, and as they are labeled they can 
gain additional meaning. We attach this meaning to the 
event by means of an extended type that is analogous but 
not the same as cell type in cortex. Instead of expanding 
the representation by expanding the number of cells (as 
for the usual view of cortical processing), we instead 
assign increasing interpretation to the digital events. We 
can still carry along multiple interpretations, but these 
interpretations are carried by multiple events instead of 
activity on multiple hardware units. For instance, a 
representation of orientation that is halfway between two 
principle directions can still be represented as near-
simultaneous events, each one signifying a different and 
nearby orientation. In addition, this extended event type 
information is not limited to binary existence. A motion 
event can carry along information about the speed and 
vector direction of the motion. 

The organization of these events in memory is also 
important for efficiency of processing and flexibility of 
software development. The architecture we evolved over 
three generations of software refactoring is illustrated in 
 Fig. 2. Events are bundled in packets. A packet is a 
reused memory object that contains a list of event 
objects. These event objects are references (in the Java 
sense) to structures that contain the extended type 
information. A particular filter or processor maintains its 
own reused output packet that holds the results. These 
packets are reused because the cost of object creation is 
much higher (typically a factor of 100) than the cost of 
object access. The packets are dynamically grown as 
necessary, although this expensive process only occurs a 
few times during program initialization. Dynamic 
memory (stack) usage is not very high because the reused 
packets are rarely allocated and need not be garbage-
collected. 

 
Fig. 2 Event packets and event types. Events are organized in 
packets that contain references (pointers) to event objects. These event 
objects are subclasses of a basic type. Each subclass elaborates the event 
type of the superclass that elaborate the event. These event packets are 
processed by event processors, outputting packets of the same type 
(filter) or new types (labeler). Some event processors do nothing to 
transform the input packet but compute metrics or object properties 
from the packet, e.g. global motion, tracked object lists. 

Generally, the number of events is reduced by each 
stage of processing, so later stages need do less work and 
can also do more expensive computations. 

In the jAER implementation, and memory buffer is 
used between the vision sensor and the processing and 
the processing occurs in buffer-sized packets. The latency 
can be as long as the time between the last events in 
successive packets plus the processing time. These 
packets are analogous to frames, but are not the same 
thing. A packet can represent a variable amount of real 
time depending on the events in the packet. Packets will 
tend to carry more identical amounts of useful 
information than frames. Our hardware interface (USB) 
between the vision sensor and a host PC is built to ensure 
that these packets get delivered to the host with a 
minimum frequency, typically 100 Hz. Then the 
maximum packet latency is 10 ms. But the latency can be 
much smaller if the event rate is higher. For example, the 
USB chip that we use has hardware buffers of 128 
events. If the event rate is 1 MHz, then 128 events fill the 
FIFO in 128 us and thus the latency due to the device 
interface is about 200 times shorter than the 30 ms per 
frame from a 30 Hz camera. 

Software infrastructure 

The jAER project is implemented in Java and presently 
consists of about 300 classes. jAER allows for flexibly 
capturing events from multiple hardware sources, 
rendering events to the screen (as viewable frames or 
other representation, e.g. space-time), and recording and 
playing them back. The event-processing algorithms 
described here can be enabled as desired by an 
automatically-generated software GUI interface that also 
allows control of method parameters and handles 
persistence. All methods can run in real time at <30% 
load on live retina events on a standard 2005 laptop 
computer (Pentium M, 2 GHz). Quantitative performance 
metrics are shown later. 

IV. EVENT FILTERING 

Filtering of the event stream transforms events or 
discards events that can arise from background activity or 
redundant sources. We will describe 3 examples of these 
filters. 

Background activity filter 

This filter removes uncorrelated background activity 
(caused on the device by transistor switch leakage or 
noise). It only passes activity that is supported by recent 
nearby past activity Background activity is uncorrelated 
and is largely filtered away, while events that are 
generated by moving objects, even if they are only single 
pixel in size, mostly pass through. This filter uses a single 
map of event timestamps to store its state, i.e., an array of 
128x128x2 32 bit integer timestamp values. (131kB).  
This filter has a single parameter T which specifies the 
support time for which an event will be passed. The steps 
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for each event are as follows: 
1. Store the event’s timestamp in all 8 neighboring 

pixel’s timestamp memory, overwriting the previous 
values. 

2. Check if the present timestamp is within T of the 
previous value written to the timestamp map at this 
event’s location. If a previous event has occurred 
recently, pass the event to the output, otherwise 
discard it. 

(This implementation avoids iteration and branching 
over all neighboring pixels by simply storing an event’s 
timestamp in all neighbors. Then only a single 
conditional branch is necessary.)  

Typical snapshot results of the background activity 
filter are shown in  Fig. 3. This filter is very effective at 
removing background activity; using typical DVS biasing 
the background rate is reduced from 3 kHz to about 
50 Hz, a factor of 60, while the rate of activity caused by 
a moving stimulus is unnoticeably affected. 

 
Fig. 3 Example of event-filtering. BackgroundActivityFilter filters 
out about 2/3 of the events that lack spatio temporal support, leaving 
only the walking fruit fly. 

V. LOW LEVEL VISUAL FEATURE EXTRACTION 

Low level feature extraction labelers take the event 
stream and assign additional interpretation to the events, 
e.g., the edge orientation or the direction and speed of 
motion of an edge.  

Orientation labeler 

A moving edge will tend to produce events that are 
correlated more closely in time with nearby events from 
the same edge. The orientation labeler ( Fig. 4) takes ON 
and OFF events from the vision sensor and labels them 
with an additional ‘orientation type’ that signals their 

angle of maximum correlation with past events in the 
nearby vicinity. The orientation type can take 4 values 
corresponding to 4 orientations separated by 45 degrees. 
This labeler uses a topographic memory of past event 
times like the background activity filter. There is a 
separate map for each retina polarity so that ON events 
can be correlated with ON and OFF with OFF. The 
orientation labeler parameters are the length of the 
receptive field in pixels and the minimum allowed 
correlation time. For each each orientation, past event 
times are compared with the present event time along the 
direction of orientation to compute the degree of 
correlation of the present event with past events. Events 
that pass the correlation test are output. The correlation 
measure can be chosen to be either the maximum time 
difference or the average time difference. Smaller time 
differences indicate better correlation. An option allows 
either outputting all orientations that pass the test or only 
the one that is best. The lookups (array offsets) into the 
memory of past event times are pre-computed when the 
labeler parameters are modified. The steps are as follows: 
1. Store the event time in the map of times, pre-

applying a subsampling bit shift if desired. 
2. For each orientation, measure the correlation time in 

the area of the receptive field 
3. Output an event for the best correlation if it passes 

the criterion test. 

 
Fig. 4 Example of event labeler: SimpleOrientationFilter annotates 
events with the edge orientation. Each panel shows a different 
orientation type output. 

VI. TRACKING 

The basic cluster tracker tracks multiple moving 
objects [14, 17]. It does this by using a model of an 
object as a spatially-connected rectangular source of 
events. As the objects move they generate events. These 
events are used to move the clusters. The key advantages 
of the cluster tracker are 

1. There is no correspondence problem because 
there are no frames, so the events between 
rendered views still push along the clusters. 
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2. Only pixels that generate events need to be 
processed and the cost of this processing is 
dominated by the search for the nearest existing 
cluster, which is typically a cheap operation 
because there are few clusters. 

The cluster has a size that is fixed but can be a function 
of location in the image. In some scenarios such as 
looking down from a highway overpass, the class of 
objects is rather small, consisting of cars, trucks and 
motorcycles, and these can all be clumped into a single 
size. This size in the image plane is a function of height 
in the image because the vehicles near the horizon are 
small and the ones passing under the bridge are 
maximum size. Additionally, the vehicles near the 
horizon are all about the same size because they are 
viewed head-on. In other scenarios, all the objects are 
nearly the same size. Such is the case of looking at 
particles in a hydrodynamic tank experiment or falling 
raindrops. In other scenarios, objects fall into a distinct 
and small set of classes, e.g. cars and pedestrians, but we 
have not developed a cluster tracker that can distinguish 
these classes. 

The steps for the cluster tracker are outlined as 
follows. For each packet of events: 
1. For each event, find the nearest existing cluster.  

1. If the event is within the cluster radius of the 
center of the cluster, add the event to the cluster 
by pushing the cluster a bit towards the even and  
updating the last event time of the cluster. 

2. If the event is not close to any cluster, seed a 
new cluster if there are spare unused clusters to 
allocate. A cluster is not marked as “visible” 
until it receives a certain number of events. 

2. Iterate over all clusters, pruning out those clusters 
that have not received sufficient support. A cluster is 
pruned if it has not received an event for a “support” 
time. 

3. Iterate over all clusters to merge clusters that belong 
to the same object. This merging operation is 
necessary because new clusters can be formed when 
an object increases in size or changes aspect ratio. 
This iteration continues until there are no more 
clusters to merge and proceeds as follows: 

 
Fig. 5 Object tracking: RectangularClusterTracker tracks multiple 
cars from highway overpass. 

The tracker has been used as part of a robotic goalie 
that achieves an effective frame rate of 550 FPS and a 
reaction latency of 3ms with a 4% processor load, using 
standard USB interfaces [14]. This combination of 
metrics would be impossible to achieve using 
conventional frame based vision. 

VII. PERFORMANCE 

The costs of digital event processing on a host PC 
platform are shown in  Table II. The measurements were 
taken on a single core Pentium M laptop with 2.13GHz 
processor, 2GB RAM, Windows XP SP2, running at 
“Maximum Performance” settings (800 MHz clock), 
running the Java 1.6 virtual machine. 

These measurements show that these algorithms 
running on a 2005 laptop processor consume from 
100-1000 ns per event, so each event requires from a few 
hundred to a few thousand machine instructions. These 
timings constrain the real time capability. For example, if 
the event processing requires 1 us/event, then the 
hardware can process 1 million events per second. Since 
the maximum event output rate of the present sensor is 
about 1 Meps, a 2005 platform can process any input 
condition in real time. In fact, at rendering frame rates of 
50 Hz, load on a contemporary laptop computer rarely 
exceeds 30% even when the most expensive processing is 
enabled. 

TABLE II PERFORMANCE. 
Algorithm us/event  

(1024 event packets) 
BackgroundActivityFilter 0.1 
SimpleOrientationLabler 0.7, RF is 5x1 pixels 
RectangularClusterTracker 0.5, 14 objects 

VIII. SUMMARY AND CONCLUSION 

The main achievement of this work is the development 
of novel event-based digital visual processing methods 
for low and high level vision. To our knowledge a 
general set of methods of utilizing event timing has not 
been previously described. These methods can be 
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efficiently realized on fixed-point embedded platforms. 
They capture the flavor of biological spike-based 
processing in synchronous digital hardware. 

None of these methods were conceived before the 
vision sensor was built in a form that readily allowed its 
everyday use away from the lab bench. It was only after 
the device was realized with a convenient (USB) 
interface and a large software infrastructure was built to 
visualize the data from the sensor that we began to 
develop the methods described here for processing and 
using the events. Thus this development was stemmed 
directly from the availability of a highly usable form of a 
new class of vision sensor. 

Although these methods have been developed as 
software algorithms running on a standard PC platform, it 
is clear that many of these algorithms can be 
implemented in embedded hardware. One can consider a 
range of event-processing platforms ( Fig. 6). Using host 
PCs for processing reduces development time and initial 
cost. The majority of work with AER systems has 
focused on the opposite extreme; using AER 
neuromorphic chips to process the output from other 
AER chips. Our industrial partners are using an 
embedded DSP platform, and our partners in the 
CAVIAR project are starting to use FPGAs for some 
simple event-based processing. This work is very recent 
and has substantial room for innovation at many levels. It 
has the potential of realization of small, fast, low power 
embedded sensory-motor processing systems that are 
beyond the reach of traditional approaches under the 
constraints of power, memory, and processor cost. 

 
Fig. 6 Event processing hardware platforms. This paper described 
methods implemented mostly at the PC level, where development times 
are shortest. 
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