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Abstract
This chip provides retinal and simple cell

responses to visual stimuli. It can be used by visual
physiologists to debug and test their experimental
setups and by instructors to demonstrate the
responses of the early visual system. The chip has a
hexagonal arrangement of 7 photodiodes. Subse-
quent processing produces the chip’s outputs: An
adaptive photoreceptor cell, a retinal horizontal cell,
on- and off-type spiking retinal ganglion cells, and
two spiking simple-type cells of odd and even type.
The membrane potentials of some of the cells are
also available. The 5 mm2 chip was built in a
1.6 �m CMOS technology. All parameters are set
by an on-chip bias generator. 

I. Motivation
Modern visual physiology requires synchroniza-

tion of multiple computers that generate visual stim-
uli, record responses, and perform on-line data
analysis. These custom-built setups are usually rid-
den with irritating bugs that take months to
expunge. There exist no commercially available
animal “stand-in” devices that allow vision physiol-
ogists to test the complete experiment design from
visual stimulus to on-line analysis of neural
responses. Such a device would be valuable for
debugging the setup before an animal is sacrificed
for an experiment. Lecturers could also demonstrate
compellingly the operation of retina and visual cor-
tex. The aim of this work was to fabricate a
practical device to fulfill these requirements, with
battery-powered stand-alone operation, a number of
easily selectable outputs, and preset operating point.

II. Chip Architecture
Fig. 1 shows the schematic of the core of the chip

corresponding to the layout shown in Fig. 2. A dis-
crete array of 7 hexagonally-arranged photodiodes
feed their photocurrents to a linear array of 7 adap-
tive photoreceptor circuits (Fig. 3) [3]. The receptor
outputs connect to the horizontal/bipolar layer cir-
cuits shown in Fig. 4. The horizontal cell circuit
computes the average photoreceptor output using a
follower-aggregator [5]. An antibump circuit [4] in
each pixel splits the difference between photorecep-
tor and horizontal cell outputs into rectified on and
1

off currents. These on and off currents drive 14 spik-
ing adaptive ganglion cells (Fig. 5) [1]. These cells
connect with excitatory and inhibitory synapses
(Fig. 6) to two simple-type V1 cell somas (same cir-
cuit as ganglion cell). The connections are arranged
to create the push-pull models of odd and even sim-
ple-type receptive fields shown in Fig. 7. For exam-
ple, the odd simple cell is excited by on ganglion
cells on the right and by off ganglion cells on the
left. It is also inhibited by off ganglion cells on the
right and by on ganglion cells on the left. The odd
simple cell is maximally excited by the black and
white edge shown overlaying it in Fig. 7. A PCB
(Fig. 8) carries the chip with its lens, and provides a
built-in speaker, volume control, output selection,
and BNC or 3.5mm audio plug outputs for connec-
tion to standard physiology rigs or external speak-
ers.

III. Bias Generator
The on-chip bias circuit generates 12 internal bias

currents and reference voltages. They are nearly
independent of threshold and supply voltage varia-
tions. The bias circuit is based on a �-multiplier
loop that generates a known master reference cur-
rent [6] using a single external resistor. A pseudo-
resistive divider based on Bult and Geelen’s [2] cur-
rent splitter derives the other bias currents from this
master current. The ratio of the largest current
(10 �A) to the smallest (100 pA) is 105.

IV. Operation
Fig. 9 shows representative outputs from the odd

type simple cell in response to drifting sinusoidal
grating patterns with varying orientation.

Power consumption of the 9V battery powered
system is 10 mA. Chip power consumption is 1 mA
at 5V.

Conclusion
This chip is being used at INI on a regular basis

for experiment design, student training, and lec-
tures. The audio output is particularly effective for
demonstrations to large classes. We are planning
production of an expanded design for distribution to
laboratories and teachers.
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Fig. 1 Chip core schematic.
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Fig. 2 Chip layout.
Fig. 3 Adaptive photoreceptor. Out 
drives the Horizontal/Bipolar stage.
Fig. 4 Horizontal and bipolar cells. Global node FollAgg is the 
average photoreceptor. On and off drive the ganglion cells.
Fig. 5 Integrate-and-fire ganglion cell and simple cell 
soma. Lower circuitry provides spike adaptation.
Fig. 6 Excitatory and inhibitory synapses. 
Epsc and ipsc drive the simple cells.
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Fig. 7 Chip outputs and their receptive fields.
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Fig. 8 PCB.
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Fig. 9 Representative measured responses from 
odd simple cell. Orientation tuning curve, spike 
rasters, and histograms in response to a drifting 
sinusoidal grating with varying orientation; 
contrast 100%, temporal frequency 2 Hz, spatial 
frequency about 1 pixel, 3 repeats. Orientation 
tuning (above) shows first harmonic response. 
Stimuli 1 (0o) and 7 (180o) are horizontally 
drifting vertical gratings. Stimuli 13 and 14 are a 
blank screen. 
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