Agnosia

- A-gnosis (absence of knowledge);
 Seelenblindheit; agnosia (Freud)
 - Akinetopsia
 - Achromatopsia
 - Capgras syndrome
DF: A Visual Agnostic

- DF suffered irreversible brain damage following carbon monoxide intoxication. MRI imaging reveals diffuse damage, mainly in extrastriate cortex.
- Her low-level vision is relatively intact: she can detect flashes within 30°, her contrast response function is relatively normal and she can discriminate & perceive colors.
- She can catch a ball or stick thrown at her, can navigate on her own, can follow a target with her eyes.
- She can't recognize 2-D line drawings or copy them. She can draw objects from memory, but can't recognize them later.
- DF has profound lack of form perception (apperceptive agnosia).
(Milner & Goodale, 1995)
Matching

Posting

DF

Control

(Goodale, 2000)
DF: A Visual Agnostic

- DF can’t perceive the orientation of a slot, but can rapidly ‘post’ a card into the slot at the correct orientation
- She is unable to judge the size of a block, but when asked to pick it up, her thumb-index finger aperture scales correctly
- If a 2 sec delay is interposed between visual exposure and motor execution, her performance deteriorates. Her short-term memory for more cognitive tasks is intact
fMRI confirms that DF has more serious impairments in her ventral pathway than in her dorsal regions (Goodale and Milner, 2004).
Epileptic Seizures: Definitions

- **Seizures (convulsions)**
 - abnormal motor, sensory and/or behavioral activity resulting from excessive, abnormal cortical electrical activity
 - 10% will have at least 1 seizure

- **Epilepsy (primary/epileptic seizures)**
 - recurrent unprovoked seizures 24h or more apart
 - <1% of population is affected
Epileptic Seizure Classification

- **Simple** seizure: consciousness not impaired
- **Complex** seizure: consciousness impaired
- **Focal** seizure: only part of cortex involved
- **Generalized** seizure (*grand mal*): involve entire cortex

Note: A focal seizure may become generalized

- **Absence** seizure (*petit mal*): brief periods of wakeful unconsciousness
Automatic Behaviors in Epileptic Patients

In a major seizure a patient suddenly loses consciousness and has generalized convulsion. There is no evidence of psychical activity, only silence. There is gross, purposeless somatic and visceral activity. The return to normal may be much more deliberate. The storm of the convulsion having passed, the patient lies motionless. Electrical potentials in the brain are damped or almost completely absent. The respiratory centers continue to function, although, perhaps imperfectly. Gradually body movements reappear. The patient stirs, opens his eyes, but obviously is not conscious of his environment. There is a lag in the return of consciousness during which somatic coordination becomes steadily more complete. The patient places himself in a more comfortable position. He may then go to sleep. If so, he probably awakens some hours later to a normal state with no recollection of the whole affair.

But if he does not sleep and if consciousness is slow to return, he may get up and go about in a confused manner. It is easy to see that his behavior is automatic. There is for the time being freedom or release from conscious control. In this state, consciousness is apt to return to him gradually. He may first seem to be aware of himself, then of his environment, and finally, after a little confusion, he gains access to memory, to understanding and insight.

Psychomotor or partial, complex temporal lobe seizures

A seizure of a different nature was observed in a 24-year-old man, A.C., with a right temporal epileptogenic EEG focus and attacks classified in his chart as "complex partial." The seizures were described as starting with a feeling of fear or sadness followed by "loss of awareness of his surroundings with loss of consciousness" accompanied by staring, face and neck movements, spitting, chewing, elevation of the left arm, and uttering phrases like "I love you" or obscene words.

The patient reported that after an initial feeling of fear he loses the capacity to recall anything that happens during the spell. He is usually able to alert people around him that he is having a seizure, but he has no memory of this. He has a glassy look to his eyes, spits, chews and makes other lip movements. He is, however, not totally unresponsive, and his fiancée could give many examples of this. For example, if she asks him his name or how old he is, he is wont to reply correctly, yet he subsequently has no recollection of this. When asked to execute certain movements during an attack, he will do so correctly, again not remembering anything of this later. The patient has said to his fiancée during an attack "I am going to marry you, honey," again without being able to recall this. Frequently during an attack he would say to anyone around him "I love you," and if the person's name was known to him, add the name to the phrase. While in hospital he said to his roommate during one of these attacks "I love you, David," even though he had known David for only 1-1/2 days. He had no recollection of this. . . .

— (Gloor, 1986).
Psychomotor or partial, complex temporal lobe seizures

It seems likely that there is in the temporal region, and perhaps in the anterior frontal region, an area that has a particularly direct connection with the neurone mechanisms essential to memory recording and conscious perception. On the other hand, the central, parietal, and occipital cortex has its most direction connection with the sensory and motor coordinating mechanisms of the centrencephalic systems.

Consequently, there must be some form of division between the mechanism within the centrencephalic system that is devoted to physical co-ordination and that devoted to memory and mental processes. Automatism is produced by functional interference with the latter portion of the centrencephalic system. It is difficult to find words to express such a conclusion---words that will not be misleading. But the very existence of the automatic state forces us to think of a sensorimotor and an intellectual subdivision of the mechanism of the centrencephalic system.

(Penfield and Jasper, 1954)
Are Sleepwalkers Zombies?

- Somnambulistic activities include talking, sitting up in bed, mumbling, undressing/dressing, walking, going to the bathroom, moving furniture, jumping out of windows, driving…
- Episodes last between half a minute and half an hour
- More frequent in children than in adults
- Occurs during non-REM
- Leaves no explicit recollection
- Rarely, propensity for violence, including homicide (no-insane automatism defense)
- Eyes can be frequently open, clumsy movements (zombies)

- “They appeared, although in a state of frenzy and intense autonomic arousal, as automatons unaware of what they were doing and unresponsive to stimuli from their environment”
 - (Moldofsky, H et al. Sleep-related violence Sleep 18: 731-739, 1995).
Dissociative Identity Disorder (DID)

DSM-IV Diagnostic criteria:

A. The presence of 2 or more distinct identities or personality states (each w/ its own relatively enduring pattern of perceiving, relating to, & thinking about the environment & self).

B. At least 2 of these identities or personality states recurrently take control of the person's behavior.

C. Inability to recall important personal info that is too extensive to be explained by ordinary forgetfulness.

D. The disturbance is not due to the direct physiological effects of a substance (e.g., blackouts or chaotic behavior during Alcohol Intoxication) or a general medical condition (e.g., complex partial seizures). Note: In children, the symptoms are not attributable to imaginary playmates or other fantasy play.

Psychobiological characteristics of DID
(Reinders et al. 2006, *Biol Psychiatry*)

- DID pts have 2 or more dissociative identity states (DIS), categorized as 'neutral identity states' (NIS) & 'traumatic identity states' (TIS).

- NIS inhibit access to traumatic memories thus enabling daily life functioning.

- TIS have access & responses to these memories

- Do DIS pts show different psychobiological reactions to trauma-related memory?

- DIS have been shown to have different psychobiological characteristics that cannot be simulated by controls: electrodermal activity, EEG, visual evoked potentials, autonomic variables, optical variables, & arousal

- Affected brain regions are generally directly or indirectly linked w/ emotional & memory processing.
Methods

- 11 female DID pts (27-48 yrs) w/ self-controlled switching btw 1 NIS & at least 1 TIS (subjective age >10)
- Neutral memories endorsed by both states; traumatic memories experienced as personal only by TIS
- Using $H_2^{15}O$ PET explored rCBF patterns in the NIS & TIS states when exposed to neutral vs traumatic autobiographical memory scripts
- 120 sec scripts audiotaped in neutral tone by one of PIs
- 3 psychobiological parameters were tested:
 - rCBF determined w/ $H_2^{15}O$ PET
 - subjective ratings (emotional & sensori-motor)
 - cardiovascular responses (heart rate, blood pressure, heart rate variability)

• Both NIS and TIS gave informed oral consent.
Graphical rep of subjective emotional & sensori-motor experiences, & cardiovascular responses

Heart rate frequency

Systolic blood pressure

Diastolic blood pressure (n.s.)

Heart rate variability

Sensori-motor rating

Emotional rating

Dashed line = response of the NIS when listening to the neutral or trauma-related MS. Solid line = response of the TIS when listening to the neutral or trauma-related MS.

(Only sig or near sig interaction effects are depicted)
- Main effects: Sig diff in rCBF patterns for the 2 DIS, but not for MS.
 - NIS had broad pattern of brain area activations compared to only a few brain areas in the TIS

- No interaction effect; these patterns indifferent to MS

- Functioning as a DIS is of a more general nature, maintaining a different brain state, rather than directly linked to the effect of particular memories

Brain areas which display a sig increase in rCBF for the DIS main effect.

Green = rCBF changes (activations) for the TIS.
Red = rCBF changes (activations) for the NIS.
In Sum

- DID pts encompass at least 2 different DIS.
- Psychobiological differences were found for the different DIS.
- These identities involve different subjective reactions, cardiovascular responses, & cerebral activation patterns to a trauma-related MS.
- rCBF data revealed different neural networks associated w/ different processing of the neutral & trauma-related memory script by NIS & TIS.
- So there seems to be a type of “splitting” on C in these pts
Imagery in a coma patient

A. Owen et al, 2006