Institute of Neuroinformatics UNI/ETH Zurich

Biological and Computational Vision

Lecture 2

Daniel Kiper February 29, 2024 www.ini.unizh.ch/~kiper/comp_vis/index.html

A section through the human retina

Receptors: rods and cones

Bipolar and Horizontal cells

Dowling, 1987 (Fig 2.1) Boycott and Dowling (1969)

Phototransduction in rods and cones

<u>Rods</u>: Vision in low light (e.g. night).

<u>Cones</u>: Vision in stronger light (e.g. day) .

Dowling, 1987 (Fig 4.3b)

Distribution of rods and cones:

a view from the side

Wandell, 1995 (Fig 3.1)

Response of a cone to light of two different wavelengths

Principle of univariance

Wandell, 1995 (Figs 4.17-4.18)

Light adaptation

Human light and dark adaptation

The Jungfrau viewed from Wengen

We care for surface reflectance, not light intensity. Contrast is proportional to reflectance.

	Reflectance	Intensity <i>I</i> at noon (1000000 W)	Intensity <i>I</i> at dusk (1000 W)	Local contrast <i>c</i> at noon (1000000 W)	Local contrast <i>c</i> at dusk (1000 W)
Snow	90%	900000 W	900W	1.25	1.25
Grass	40%	400000 W	400 W	0	0
Paper	80%	800000 W	800 W	1	1
Ink	10%	100000 W	100 W	-0.75	-0.75
Mean	40%	400000 W	400 W	0	0

Intensity I is reflectance*illuminance.

Local contrast is c = (I-Imean)/Imean.

Cone responses adapt to background illumination

Norman & Perlmann (1979)

Light adaptation is somewhat local in space

Ganglion cells

Basic retinal circuitry

Dowling, 1987 (Fig 3.17)

Concentric receptive fields

Ganglion cell

action potentials

responses:

(a) An on-center / off-surround cell

Ganglion cells adapt to the mean light intensity

Sakmann and Creutzfeldt (1969)

Ganglion cells have center-surround receptive fields

Responses

Receptive field maps

Examples of responses of an ON-center cell

Examples of responses of an OFF-center cell

Enroth-Cugell and Robson (1984)

Center-surround receptive fields enhance edges

The linear model

A model of the ganglion cell receptive field

ON-center receptive field

"Difference of gaussians" model

R(x,y)

F(u,v)

*

I(x,y)

$R(x,y) = \iint F(u,v) I (x+u, y+v) dudv$

Assumptions implicit in the last 3 slides

•Receptive fields are difference of gaussians

•Responses are a weighted average of the stimulus intensity, where the map of the weights is the receptive field.

Are these assumptions reasonable?

The second assumption is true if and only if the cell is a linear system.

Linear systems L(x) obey

- homogeneity: L(a x) = a L(x)
- superposition: L(x+y) = L(x) + L(y)

Homogeneity

Superposition

Linearity is often checked by using sinusoidal stimuli, because for a linear system:

1) The responses to sinusoids are sinusoids.

2) The dependence of response on stimulus frequency can be predicted from the shape of the receptive field.

(so if any of these two are false, the system is not linear)

Responses of a linear system to sinusoids

A sinusoid in 2-D: a sinusoidal grating

Predictions of the linear model with a "difference of gaussians" receptive field

Spatial frequency

Enroth-Cugell and Robson (1984)

Fitting the model to the data

Enroth-Cugell et al. (1983)

The fits are good: the responses to sinusoids are predictable by a linear model with a "difference of gaussians" receptive field.

Let's try another test of linearity. If it succeeds as well, we'll be happy with the model.

Making a square wave with sinusoids

Barlow and Mollon, 1982 (Fig 1.2)

Square waves in 2-D

Barlow and Mollon, 1982 (Fig 8.7)

Responses of a ganglion cell to edges

Chevreuil illusion - Mach bands

Sensitivity for different spatial frequencies

Spatial frequency tuning of a ganglion cell

Enroth-Cugell et al. (1983)

Spatial frequency sensitivity curve of a whole brain

Contrast sensitivity varies with spatial frequency

One interpretation of the contrast sensitivity curve

