Institute of Neuroinformatics
 UNI/ETH Zurich

Biological and Computational Vision

Lecture 2

Daniel Kiper
February 29, 2024
www.ini.unizh.ch/~kiper/comp_vis/index.html

A section through the human retina

Receptors: rods and cones

Bipolar and Horizontal cells

Dowling, 1987 (Fig 2.1)
Boycott and Dowling (1969)

Phototransduction in rods and cones

Rods: Vision in low light (e.g. night).
Cones: Vision in stronger light (e.g. day) .

Distribution of rods and cones:

a view from the side

Wandell, 1995 (Fig 3.1)

Response of a cone to light of two different wavelengths

Principle of univariance

Light adaptation

Human light and dark adaptation

The Jungfrau viewed from Wengen

We care for surface reflectance, not light intensity. Contrast is proportional to reflectance.

	Reflectance	Intensity I at noon $(1000000 \mathrm{~W})$	Intensity I at dusk $(1000 \mathrm{~W})$	Local contrast c at noon $(1000000 \mathrm{~W})$	Local contrast c at dusk $(1000 \mathrm{~W})$
Snow	90%	900000 W	900 W	1.25	1.25
Grass	40%	400000 W	400 W	0	0
Paper	80%	800000 W	800 W	1	1
Ink	10%	100000 W	100 W	-0.75	-0.75
Mean	40%	400000 W	400 W	0	0

Intensity I is reflectance*illuminance.
Local contrast is $c=($ I-Imean $) /$ Imean.

Cone responses adapt to background illumination

Light adaptatio

omewhat local in space

Ganglion cells

Basic retinal circuitry

Concentric receptive fields

(a) An on-center/offssurround cell
On-centerfoff-surround

feceptive field \begin{tabular}{c}
Bipolar cell

responses

changes in

potarization

\quad

Canglion cell

responses:

action potentials
\end{tabular}

Ganglion cells adapt to the mean light intensity

Ganglion cells have center-surround receptive fields

Responses

Receptive field maps

ON.CENTER CELL

Examples of responses of an ON-center cell

A

Enroth-Cugell and Robson (1984)

Examples of responses of an OFF-center cell

Center-surround receptive fields enhance edges

The linear model

A model of the ganglion cell receptive field

ON-center
receptive field

"Difference of
gaussians" model

$R(x, y)=\iint F(u, v) I(x+u, y+v) d u d v$

Assumptions implicit in the last 3 slides

-Receptive fields are difference of gaussians
-Responses are a weighted average of the stimulus intensity, where the map of the weights is the receptive field.

Are these assumptions reasonable?

The second assumption is true if and only if the cell is a linear system.

Linear systems L(x) obey

- homogeneity: $L(a x)=a L(x)$
- superposition: $\mathrm{L}(\mathrm{x}+\mathrm{y})=\mathrm{L}(\mathrm{x})+\mathrm{L}(\mathrm{y})$

Homogeneity

Superposition

Linearity is often checked by using sinusoidal stimuli, because for a linear system:

1) The responses to sinusoids are sinusoids.
2) The dependence of response on stimulus frequency can be predicted from the shape of the receptive field.
(so if any of these two are false, the system is not linear)

Responses of a linear system to sinusoids

Higher frequency sinusoid

A sinusoid in 2-D: a sinusoidal grating

Predictions of the linear model with a "difference of gaussians" receptive field

Fitting the model to the data

The fits are good: the responses to sinusoids are predictable by a linear model with a "difference of gaussians" receptive field.

Let's try another test of linearity. If it succeeds as well, we'll be happy with the model.

Making a square wave with sinusoids

Square waves in 2-D

Responses of a ganglion cell to edges

Chevreuil illusion - Mach bands

Sensitivity for different spatial frequencies

Spatial frequency tuning of a ganglion cell

Spatial frequency sensitivity curve of a whole brain

\square
\square

$=$

One interpretation of the contrast sensitivity curve

De Valois \& De Valois (1990)

