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THIS TUTORIAL IS UNDER CONSTRUCTION !

Installation :

If you plan to use CX3D for developing your own models, we strongly recommend that you use a Java Inte-

grated Development Environment, such as Eclipse (http://www.eclipse.org). Below we just describe the steps

to follow to run the example simulations provided in the original CX3D source code (in particular, the file

DividingCell.java):

For Windows

Download the zip file from the webpage. Double click the downloaded file, and extract it into a folder. Press

Start, Run, and enter cmd. A command line window will appear where you enter the two following lines:

cd «ExtractionDirectory»

java ini/cx3d/simulations/tutorial/DividingCell

(where «ExtractionDirectory» is the name of the directory where you put the extracted files).

For Mac OS X

Download the zip file from the webpage. A folder ini appears in your Downloads folder. You can move it in the

folder of your choice, say Documents. Open a terminal (in /Applications/Utilities/). A window appears,

in which you type the following lines:

cd /Documents

java ini/cx3d/simulations/tutorial/DividingCell
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1 Preliminaries

1.1 Introduction

CX3D is a Java package for simulation of development of neural tissues. It allows cell division, migration,

extension of neurites to form axonal and dendritic arbors, synapses formation, signaling molecules production

and detection.

Beside the implementation of these biological processes, CX3D also takes into account the physical properties

and interactions of the cells : neurons are decomposed into discrete elements, each one with a volume, an elas-

ticity, a friction coefficient to simulate the mechanics of the cells. The program also allows diffusion of chemicals

both in the extra-cellular matrix and inside the cells.

In this tutorial, we assume that the reader has some basic knowledge of Java.

1.2 Four layers of abstraction

We designed our software so that the user doesn’t have to care about the technicalities of the implementation,

and can concentrate on designing the growth rules he/she wants to simulate. Therefore, we have defined four

abstract layers in the representation of a cell (Figure 1). The user interacts with the two upper layers by writing

small modules describing the model’s specification, he or she has to call some methods in the third layer, but

doesn’t interact with the fourth one at all. Each layer corresponds to a distinct java package, presented here

from the most "biological" one to the most "utilitarian" one:

1. ini.cx3d.cell: in particular the class Cell, from which there is a unique instance per neuron. The user

specifies biological properties concerning the entire neuron in small classes implementing the CellModule

interface, that are inserted into the cell instances. Typically a cell cycle or a gene network would be coded

at that level.

2. ini.cx3d.localBiology: the discrete elements composing a cell: SomaElement for the cell body, and a

collection NeuriteElement for the neurites. Both are subclasses of the abstract CellElement. Local

biological behavior like movement, branching, production or detection of a guidance cues are coded in

classes implementing the LocalBiologyModule, which are inserted into specific cell elements.

3. ini.cx3d.physics: this third layer represents the physical properties of the cells like volume, friction,

elasticity, etc. It also performs the simulation of the diffusion processes. Each soma element instance

is associated with an instance of PhysicalSphere, and each neurite element with a PhysicalCylinder.

They both derive from the abstract PhysicalObject, which in turn derives from PhysicalNode. This

latter class represents a discrete volume of space, and the extracellular substances (instances of Substance)
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it contains. To have the physical objects derive from the class representing pace, guaranties that each

object created automatically comes with a definition of the space it is contained in.

4. ini.cx3d.spatialOrganization: Written by Dennis Goehlsdorf, the fourth and most technical level de-

fines the boundaries between the physical nodes, as well as the neighboring relation between physical

objects. It consists of a 3D kinetic and dynamic Delaunay triangulation 1.

There are other packages in CX3D: ini.cx3d.simulation, which contains two important classes : Scheduler

and ECM, which are described below (Section 1.4), ini.cx3d.graphics contains the GUI, ini.cx3d.synapses the

classes for making synaptic connections, ini.cx3d.utilities.export for saving an XML description of a grown

network in the NeuroML level 3 scheme, ini.cx3d.utilities, especially with the class Matrix, containing useful

static methods for vector and matrix operations.
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Figure 1: The four layers of abstraction in our cell representation: (green) The neighborhood definition : each
physical object of the simulation contains a vertex. All vertices are linked in a graph structure that defines for each one
of them, based on its localization, a subset of the other vertices that are considered as its neighbors. This definition is
based on a Delaunay triangulation. (blue) The physical layer, that represents the space with the chemicals it contains
and the methods for diffusion, as well as the mechanical properties of the cells. (red) the local biological properties of
the neurons, associated with each physical objects (white) The higher level biological processes, relative to the entire
cell. (lower right) possible automatic copy modes for local biology modules: when soma divide, when new neurites are
being formed from the soma, when neurite branches, when neurite extend.

1kinetic means that the points can be moved, dynamic that they can be added or removed.
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1.3 Imports

In the examples provided in this tutorial, we will always import only the classes that are explicitly needed, but

it might be convenient to directly import the packages containing the classes describing the three upper layers

of cell representation, the classes needed for running the simulation, the class containing several parameters and

a utility class for vectorial operations:

import ini.cx3d.cells .*;
import ini.cx3d.localBiology .*;
import ini.cx3d.physics .*;

import ini.cx3d.simulations .*;
import ini.cx3d.Param;
import static ini.cx3d.utilities.Matrix .*;

1.4 Particular non cellular classes

Extracellular matrix

The class ini.cx3d.simulation.ECM is used when one wants to add additional points in the triangulation (see

below), or register some chemicals or add some boundary conditions. It is useful to have a reference for it, and

so many of your simulations will start with :

ECM ecm = ECM.getInstance ();

Many processes in CX3D might use a pseudo random arguments (when you add noise for instance). It is

nevertheless often useful to be able to reproduce exactely one simulation run. For this we can use the method

ECM.getRandomDouble(). All CX3D classes use this method for their random processes. By specifying an

initial seed, you ensure that several runs will give identical outcomes : ECM.setRandomSeedTo(long seed);

Running the simulation

For actually running the simulation, we use the class ini.cx3.simulation.Scheduler that runs each object in

the simulation (basically it calls the run() method that each CX3D objects contains). The scheduler contains

two important static methods : simulate(), that runs the simulation indefinitely, and simulateOneStep(),

that -big surprise- simulates only one time step. The latter is usually put inside a for loop, and is used if you

want to have an external control on the simulation (see section 2.1).

Parameters

The class ini.cx3d.Param contains many parameters default value (like the default diameter of a neurite for

instance), some java.awt.Color instances, with different degrees of transparency, and -probably the most
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important- ,the time discretization scale of the simulation (Param.SIMULATION_TIME_STEP). By default it is set

to 10−2 hours (36 seconds). Currently we don’t dynamically change this time step.

Linear algebra

The class ini.cx3d.utilities.Matrix contains several static methods for performing operations on vectors

(double[]) and matrices (double[][]). Unlike other java packages, you don’t have to instantiate any matrix

object. You directly call call one of the methods, giving the arrays as argument, and get a new array back. Be

careful, there is no dimensions check! Of course, you don’t have to use this class if you have your own habits.

But it appears in the examples below.

1.5 Triangulation requirement

Although Dennis Goehlsdorf’s triangulation package is extremely stable, and allows points to lie on a line, or on

a plane (which is usually not the case for the Delaunay triangulation), you cannot start with points on a line or

on a plane. It is therefore a good idea to first insert a couple of PhysicalNode at random position (something

like 20). In case where you want to use diffusion, it is also necessary to have additional points, in this case much

more are needed.

for (int i = 0; i < 18; i++) { // e i gh t e en ex t ra Phys ica lNodes
ecm.getPhysicalNodeInstance(randomNoise (500 ,3));

}

Note :

We use the method randomNoise(x,n), which gives an array of length n of double randomly chosen between

-x and +x. It is our first use of the static methods of the class ini.cx3d.utilities.Matrix.
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2 Cell and cell modules

2.1 First example : simple division

A cell contains four layers of objects, but luckily you don’t have to declare them all and link them to one

another. Instead you can use the convenient class CellFactory:

double [] cellOrigin = {0.0, 3.0, 5.0}; // f u tu r e c e l l ’ s l o c a t i o n
Cell cell = CellFactory.getCellInstance(cellOrigin ); // c r e a t e the f ou r l a y e r s

you can now access the local biology layer, and the physics layer with :

SomaElement soma = cell.getSomaElement ();
PhysicalSphere sphere = soma.getPhysicalSphere ();

We are now ready to design our first simulation. Suppose we are interested in cell division. Division is done at

the cell level, and propagates down so that each layer is being copied. We end up with two cells, each one with

a soma element, a physical sphere and a space node. The mother cell becomes one of the daughters, and the

other daughter cell is returned by the method used for triggering division :

Cell c2 = cell.divide ();

This method can also take arguments: a double, defining the volume ration between the two daughters (1.0

means equal size) and/or an array of 3 doubles specifying the division axis in global coordinates. (It is also

possible to work with local spherical coordinates, see later).

The division conserves the total volume, so in order to make several cycles of divisions, you have to increase

the volume after each division. Since it is a physical property, we have to call a method in the physical sphere.

We could directly use the assessor PhysicalObject.setVolume(.), but usually we want a smooth increase in

volume, and we prefer to call one of the following methods:

sphere.changeDiameter (100); // r a t e o f 100 um/h
sphere.changeVolume (100); // r a t e o f 100 um^3/h

The model we propose is very simple, and it goes as follows: at each time step, we check the diameter of our cell.

If it is above the threshold of 20 µm, we make it perform a division, otherwise it increases gradually it’s volume.

The class can be found in the file ini.cx3d.simulations.tutorial.DividingCell; it is also reproduced here:

package ini.cx3d.simulations.tutorial;

import ini.cx3d.Param;
import ini.cx3d.cells.Cell;
import ini.cx3d.cells.CellFactory;
import ini.cx3d.localBiology.SomaElement;
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import ini.cx3d.physics.PhysicalSphere;
import ini.cx3d.simulations.Scheduler;

public class DividingCell {

public static void main(String [] args) {

double [] cellOrigin = {0.0, 3.0, 5.0};
Cell cell = CellFactory.getCellInstance(cellOrigin );
cell.setColorForAllPhysicalObjects(Param.RED);
SomaElement soma = cell.getSomaElement ();
PhysicalSphere sphere = soma.getPhysicalSphere ();

for (int i = 0; i < 50000; i++) { // at each time step ,
Scheduler.simulateOneStep (); // run the s imu l a t i on
if(sphere.getDiameter () <20){ // and check the d iameter :

sphere.changeVolume (350); // . . i n c r e a s e . . .
}else{

Cell c2 = cell.divide (); // . . or d i v i d e .
c2.setColorForAllPhysicalObjects(Param.BLUE);

}
}

}
}

Notes :

1) It is an asymmetrical division, since only one of the daughter cell continues to divide. To illustrate this we

start with a red cell, and make sure that after division the non dividing daughter cell becomes blue.

2) Cell.setColorForAllPhysicalObjects(.) changes the color of all PhysicalObjects composing a cell,

whereas PhysicalObject.setColor(.) changes the color of only one particular physical object. In this case,

since the cell contains only one physical object (a PhysicalSphere), both methods would have the same effect.

3) We use colors difined in ini.cx3d.Param, but you can of course use any other standard java.awt.Color.

Exercises :

1) Modify the previous example so that every cell continues to divide, and not only one of the daughters.

2) Modify the previous example so that the cell division axis stays in the XY plane (in this case, you’ll need to

introduce extra PhysicalNode because the triangulation doesn’t like to have all points on a plane..).
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2.2 Writing a Cell Module :

In the previous example, we gave external instructions to the cells at each time step on how to behave. To

let the cells act independently during the simulation, we usually design small modules that we incorporate

into the cells. A cell module is a class that implements the CellModule interface, or that derives from the

AbstractCellModule class.

The CellModule interface contains the following methods :

public Cell getCell ()
// r e t u rn s the Ce l l t h i s module be l ongs to

public void setCell(Cell cell)
// s e t s the Ce l l t h i s module be l ongs to

public void run()
// where the s imu l a t i on a c t i on i s s p e c i f i e d ( t h i s method i s c a l l e d at each time s t ep ) .

public boolean isCopiedWhenCellDivision ()
// s p e c i f i e s i f the second daughter c e l l r e c e i v e s a copy o f t h i s module a f t e r d i v i s i o n .

public CellModule getCopy ()
// the module i n s e r t e d in the second c e l l ( i f the p r ev i ou s method r e tu rn s t rue ) .

A cell module is inserted or removed from a cell with the method Cell.addCellModule(CellModule m) and

Cell.removeCellModule(CellModule m).

Exercises :

1) Rewrite the simulation of section 2.1 with a CellModule.

(solution in ini.cx3d.simulations.tutorial.DivisionModule).

2) How can you change from symmetrical divisions (both daughter cells continue to divide) to asymmetrical

divisions (only one daughter cell divides) by changing one single word in the file?

3) Modify the class to stop division (but not the simulation) after ten division cycles.
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Figure 2: ini.cx3d.simulations.tutorial.DivisionModule: Starting with one cell, symmetrical cycles of divisions.
The black arrows denote the total force acting on each physical sphere because of the high cell density.

3 Physical objects, cell elements and local biology modules

3.1 Moving

Each PhysicalObject contains a single point mass, defining its position. To move the object, you have to move

its point mass. For that, you should NEVER use PhysicalObject.setMassLocation(.), because it doesn’t

update the physical properties. Instead, you use the following method:

PhysicalObject.movePointMass(double speed , double [] direction)

The speed units are microns/hour; a displacement is computed depending on the time step. The norm (or

magnitude) of the vector direction is not taken into account, but only its direction (if all components are zero,

then there will be no movement).

There are two important things to remember for PhysicalCylinder. First that you can only move the terminal

cylinder of a chain, and second that whether the displacement of its point mass results in a lengthening or

a shortening of the cylinder, you don’t change the tension (since it’s internal spring is also lengthened or

shortened), which corresponds to neurite elongation or retraction respectively, depending on the direction you

use to move the point mass. To ensure elongation or retraction, you can use one of the following:

PhysicalCylinder.extendNeurite(double speed , double [] direction)
// the movement i s on ly performed i f i t r e s u l t s in an e l onga t i o n

PhyicalCylinder.retractCylinder(speed)
// obv ious ly , you can ’ t choose the d i r e c t i o n .

If the retraction is longer than the neurite length, the neurite disappears (with the modules it may contain).

It is possible to call these methods from the local biology layer, through their counterpart:

CellElement.move(double speed , double [] direction)
NeuriteElement.elongateTerminalEnd(double speed , double [] direction)
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NeuriteElement.retractTerminalEnd(double speed , double [] direction)

If a cylinder is to long, it will be split into two. Note that the terminal cylinder - and its neurite element-

remains terminal. The new cylinder is inserted proximally. There is one exception: in case of bifurcation, two

new cylinders are added distally to the previously terminal one.

3.2 LocalBiologyModule

Cell elements, namely SomaElement and NeuriteElement can also contain modules, dictating their behav-

ior during simulation. Such a module is a class implementing the LocalBiologyModule interface or ex-

tending the AbstractBiologyModule class. A local biology module is added or removed with the methods

CellElement.addLocalBiologyModule(.) and CellElement.removeLocalBiologyModule(.).

The LocalBiologyModule interface contains the following methods :

public CellElement getCellElement ()
public void setCellElement(CellElement cellElement)

public void run()
//where the s imu l a t i on a c t i on i s s p e c i f i e d ( t h i s method i s c a l l e d at each time s t ep ) .

public boolean isCopiedWhenNeuriteBranches ();
// s p e c i f i e s i f the module i s cop i ed i n t o new branches

public boolean isCopiedWhenSomaDivides ();
// s p e c i f i e s i f the module i s cop i ed when the soma d i v i d e s

public boolean isCopiedWhenNeuriteElongates ();
// s p e c i f i e s i f the module i s cop i ed in each segment o f a n e u r i t e

public boolean isCopiedWhenNeuriteExtendsFromSoma ();
// s p e c i f i e s i f the module i s cop i ed in new n e u r i t e s .

public CellModule getCopy ()
// the module i n s e r t e d in another e lement when one o f the p r ev i ou s method r e tu rn s t rue .

public boolean isDeletedAfterNeuriteHasBifurcated ()
// s p e c i f i e s i f d e l e t e d when in a t e rm ina l n e u r i t e e lement that b i f u r c a t e s

3.3 Soma random walk

Now we are ready to use what we have just learned to design a module for somata to perform a smoothed

random walk (at each time step the change of direction is random, and not the direction itself):

package ini.cx3d.simulations.tutorial;

import static ini.cx3d.utilities.Matrix.add;
import static ini.cx3d.utilities.Matrix.normalize;
import static ini.cx3d.utilities.Matrix.randomNoise;
import ini.cx3d.cells.Cell;
import ini.cx3d.cells.CellFactory;
import ini.cx3d.localBiology.AbstractLocalBiologyModule;
import ini.cx3d.simulations.Scheduler;
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public class SomaRandomWalkModule extends AbstractLocalBiologyModule {

double [] direction = randomNoise (1.0, 3); // i n i t i a l d i r e c t i o n

public AbstractLocalBiologyModule getCopy () {
return new SomaRandomWalkModule ();

}

public void run() {
double speed = 50;
double [] deltaDirection = randomNoise (0.1, 3);
direction = normalize(direction );
direction = add(direction , deltaDirection );
super.cellElement.move(speed , direction );

}

public static void main(String [] args) {
for(int i = 0; i<5; i++){

Cell c = CellFactory.getCellInstance(randomNoise (40, 3));
c.getSomaElement (). addLocalBiologyModule(new SomaRandomWalkModule ());

}
Scheduler.simulate ();

}
}

Notes :

1) This class extends AbstractLocalBiologyModule, which contains a field cellElement that is declared as

protected, so that the subclasses can access it.

2) For the random walk, we consider a 3d vector direction to which we add some random noise each time step,

to slightly change the direction in which the soma moves at the constant speed of 50 microns/hours. (If you

were to change the simulation time stape ∆t, you should scale the amount of noise with
√

∆t).

3) This class uses two new static methods of Matrix: add(.) for vectorial addition and normalize(.) for

normalizing a vector (setting the length to 1.0).

4) In the main method, we create 5 cells with this module. You can change this by taking any other number,

but if you choose to have exactly 4 cells, you have to add at least one PhysicalNode instance because the

triangulation doesn’t allow 4 vertices to move (1, 2, 3, 5, 6, ... are all ok, but not 4!). You can turn on the

Delaunay display, it makes beautiful geometrical figures !!

Exercises :
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1) Make the moving cells divide (use the DivisionModule class of section 2.2). Note: if you want both

daughter cells to move, i.e. to contain an instance of SomaRandomWalkModule, you have to overwrite the

isCopiedWhenSomaDivides() method, making it return true.

3.4 Branching

New neurites (chains of PhysicalCylinder instances with their associated NeuriteElements) can be created

from a SomaElement or from a NeuriteElement. Initially, there is only one element in the chain.

From a soma, we use the method SomaElement.extendNewNeurite(), which can also take as arguments an

array of double (specifying the direction where the new neurite points to) and/or a double specifying the diam-

eter of the new cylinder. This method returns the new neurite element.

From a neurite element, we have two possibilities: to make a bifurcation or a side branche. NeuriteElement.bifurcate()

adds two new neurite elements at the tip of a distal neurite element (if it is not terminal, a runtime ex-

ception is printed to the standard error output). The method can take arguments to specify the directions

and diameters of the new branches. By default, there is a 60◦ angle between the two daughter branches.

NeuriteElement.branch() extends a side branch starting from the center of a neurite element (that doesn’t

have to be terminal), which is thus split into two.

We illustrate these methods in the file ini.cx3d.simulations.NeuriteBranchingModule, a local biology mod-

ule that produces an arbor, with bifurcation segments in red and blue, and side-branche segments in violet:

The run method contains the following code:

public void run() {
//some parameters
double speed = 100;
double probabilityToBifurcate = 0.005;
double probabilityToBranch = 0.005;
// same movement p r i n c i p l e as in the p r ev i ou s example
double [] deltaDirection = randomNoise (0.1, 3);
direction = add(direction , deltaDirection );
direction = normalize(direction );
neuriteElement.getPhysical (). movePointMass(speed , direction );
// eva lua t e b i f u r c a t i o n
if(Math.random()< probabilityToBifurcate ){

NeuriteElement [] nn = neuriteElement.bifurcate ();
nn[0]. getPhysical (). setColor(Color.red);
nn[1]. getPhysical (). setColor(Color.blue);
return;
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} // eva lua t e branching
if(Math.random()< probabilityToBranch ){

NeuriteElement n = neuriteElement.branch ();
n.getPhysical (). setColor(Color.green );
return;

}
}

direction is a filed like in the previous example, except that it not initially set to a random value. It is set to

point in the direction of the PhysicalCylinder associated with the NeuriteElement the module is set into:

public void setCellElement(CellElement cellElement) {
if(cellElement.isANeuriteElement ()){

neuriteElement = (NeuriteElement)cellElement;
// to s t a r t the e l onga t i o n in the d i r e c t i o n o f the c y l i n d e r :
direction = neuriteElement.getPhysicalCylinder (). getAxis ();

}else{
cellElement.removeLocalBiologyModule(this);
System.out.println("Sorry , I only work with neurite elements");

}
}

To have the module copied in the first neurite element of the new branches created after bifurcation or side-

branching, we make the method isCopiedWhenNeuriteBranches() return true. To avoid having the module

persisting in an element that has bifurcated (and hence that is no longer terminal), we make

isDeletedAfterNeuriteHasBifurcated() return true as well.

The simulation is started with one cell, which we make extend a neurite, in which we insert the module:

public static void main(String [] args) {
for (int i = 0; i < 18; i++) {

ECM.getInstance (). getPhysicalNodeInstance(randomNoise (1000 ,3));
}
for(int i = 0; i<1; i++){

Cell c = CellFactory.getCellInstance(randomNoise (40, 3));
NeuriteElement neurite = c.getSomaElement (). extendNewNeurite ();
neurite.getPhysicalCylinder (). setDiameter (2);
neurite.addLocalBiologyModule(new NeuriteBranchingModule ());

}
Scheduler.simulate ();

}
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has bifurcated (and hence that is no longer terminal), we make isDeletedAfterNeuriteHasBifurcated()
return true as well.

The simulation is started with one cell, which we make extend a neurite, in which we insert the module:

public static void main(String[] args) {
for (int i = 0; i < 18; i++) {

ECM.getInstance().getPhysicalNodeInstance(randomNoise(1000,3));
}
for(int i = 0; i<1; i++){

Cell c = CellFactory.getCellInstance(randomNoise(40, 3));
NeuriteElement neurite = c.getSomaElement().extendNewNeurite();
neurite.getPhysicalCylinder().setDiameter(2);
neurite.addLocalBiologyModule(new NeuriteBranchingModule());

}
Scheduler.simulate();

}
200.0 microns

200.0 microns

200.0 microns

Figure 3: ini.cx3d.simulations.tutorial.NeuriteBranchingModule: Arborization of a single neurite. Segments issued
from a side branch are violet, from the left and right daughter branch at a bifurcation are red and blue respectively. (left)
Probability to bifurcate (Pb) equal to Probability to make a side branch (Ps). (midlle) Pb > Ps. (right) Ps > Pb.

4 Substances

There are four sorts of substances: extracellular, membrane-bound, intracellular and intranuclear (aka gene
substance). All four kinds can be secreted, consumed, probed.

4.1 Extracellular Substances

Extracellular substances are represented by the class Substance, who’s most important parameters are the id,
the diffusion constant and the (exponential) degradation constant. They are stored in the PhysicalNodes, that
take care of diffusion and degradation. Cell elements and local biology modules never interact with the Sub-
stances directly, but rather with the physical node through the following methods :

public double getExtracellularConcentration(String id)
// Returns the concentration of an extracellular Substance at this PhysicalNode.

public double getConvolvedConcentration(String id)
// Returns the weighted average concentration of a Substance at this PhysicalNode
// and all its neighbors, weighted with respect to the volumes of all nodes
//(attenuates the fluctuations due to the irregular triangulation,

10

Figure 3: ini.cx3d.simulations.tutorial.NeuriteBranchingModule: Arborization of a single neurite. Segments
issued from a side branch are violet, segments from the left and right daughter branch at a bifurcation are red and blue
respectively. (left) Probability to bifurcate (Pb) equal to probability to make a side branch (Ps). (midlle) Pb > Ps.
(right) Ps > Pb.

4 Substances

There are three different kinds of substances in CX3D:

1) Extracellular substances, that can diffuse in the extracellular space. They are represented by instances of

the class ini.cx3d.physics.Substance, and stored in the PhysicalNode instances.

2) Intracellular substances and membrane-bound substances, that are confined to cell structures. For this we

use instances of ini.cx3d.physics.IntracellularSubstance, which are stored in instances of

PhysicalObject.

3) Gene substances, representing protein expression of genes. They are represented by instances of ini.cx3d.cell.GeneSubstance,

and stored in instances of Cell.

4.1 Extracellular Substances

Extracellular substances are represented by the class Substance, who’s most important fields are the id, the

diffusionConstant and the degradationConstant. They are stored in the PhysicalNodes, that take care of

diffusion and degradation. Cell elements and local biology modules never directly interact with the substances,

but rather with the PhysicalNode they are associated to2, through the following methods :

public double getExtracellularConcentration(String id)

2Recall that PhysicalObject extends PhysicalNode
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// Returns the c onc en t r a t i on o f an e x t r a c e l l u l a r Substance at t h i s Physica lNode .

public double getConvolvedConcentration(String id)
// Returns the weighted average c onc en t r a t i on o f a Substance at t h i s Physica lNode
// and a l l i t s ne ighbors , weighted with r e s p e c t to the volumes o f a l l nodes
// ( a t t enua t e s the f l u c t u a t i o n s due to the i r r e g u l a r t r i a n gu l a t i o n ,
// but more expens i v e to compute ; u s u a l l y not needed ) .

public double getExtracellularConcentration(String id , double [] location)
// Returns the c onc en t r a t i on o f an extra−c e l l u l a r Substance
// ( obta ined by i n t e r p o l a t i o n between the Phys ica lNodes sur round ing t h i s po in t )

public double [] getExtracellularGradient(String id)
// Returns the g r ad i en t at the Phs ica lNode ’ s l o c a t i o n

public void modifyExtracellularQuantity(String id , double quantityPerTime)
// Mod i f i e s the quant i ty ( i n c r e a s e s or d e c r e a s e s ) o f a Substance at t h i s Physica lNode ’ s l o c a t i o n

At the begining of a simulation that involves extracellular substances, you declare them and register them to

ECM (it is not mandatory, but if you do so, you’ll be able to visualize there concentration at each physical

node, and you can specify the diffusion and degradation constants). For instance:

Substance netrin = new Substance("Netrin" ,1000, 0.01); // id , d i f f u s i o n cst , degrad c s t
ECM.getInstance (). addNewSubstanceTemplate(netrin );

Imagine that we want to model cell aggregation. We have each soma release a certain chemical cue, and

in the mean time move up the gradient of concentration of the same chemical. The run method of the

LocalBiologyModule is something like :

public void run() {
PhysicalObject physical = super.cellElement.getPhysical ();
// move
double speed = 100;
double [] grad = physical.getExtracellularGradient(substanceID );
physical.movePointMass(speed , normalize(grad ));
// s e c r e t e
physical.modifyExtracellularQuantity(substanceID , 1000);

}

Exercises :

1) Write a simulation with two different types of cells, secreting a cell type specific substance, that aggregate.

(Solution: ini.cx3d.simulations.tutorial.SomaClustering)

2) With the run method proposed above, somata move all the time. Modify the method so that they only move

if the gradient stays in the same direction for a while.
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Figure 4: ini.cx3d.simulations.tutorial. SomaClustering: 60 yellow cells secreting a "yellow" diffusible substance and 60
violet cells secreting a "violet" diffusible substance follow the gradient of concentration of their respective substance, which
leads to cell clustering.

public void addArtificialLinearGradientZ(
Substance substance, double maxConcentration, double zCoordMax, double zCoordMin)

// Defines a linear artificial concentration in ECM, between two points along the Z axis.
// Outside this interval the value will be 0. Between the boundaries the value is the linear
// interpolation between the maximum value and 0.

public void addArtificialGaussianLayerX(
Substance substance, double maxConcentration, double xCoord, double sigma)

public void addArtificialLinearGradientX(
Substance substance, double maxConcentration, double xCoordMax, double xCoordMin)

In the file NeuriteChemoAttraction, we define an artificial gaussian concentration in the main method:

ECM ecm = ECM.getInstance();
Substance attractant = new Substance("A",Color.red);
ecm.addArtificialGaussianLayerZ(attractant, 1.0, 400.0, 160.0);

Note :

We use a different constructor for Substance. Because the concentration profile is fixed by a gaussian func-
tion, there is neither diffusion nor degradation. Instead we define the color for the visualization.

We then insert a module, with the following run method :

public void run() {
PhysicalObject physical = super.cellElement.getPhysical();
double concentration = physical.getExtracellularConcentration(substanceID);
double[] grad = physical.getExtracellularGradient(substanceID);

// some parameters
double concentrationThreshold = 0.3;
double bifurcationCoefficient = 0.005;
double oldDirectionnWeight = 1.0;
double gradientWeight = 0.2;
double randomnessWeight = 0.6;

// 1) movement
if(physical.getExtracellularConcentration(substanceID)> concentrationThreshold)

grad = new double[] {0.0, 0.0, 0.0};

double[] newStepDirection = add(
scalarMult(oldDirectionWeight, direction),
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s

Figure 4: ini.cx3d.simulations.tutorial.SomaClustering: 60 yellow cells secreting a "yellow" diffusible substance
and 60 violet cells secreting a "violet" diffusible substance follow the gradient of concentration of their respective sub-
stance, which leads to cell clustering.

4.2 Artificial extracellular Substances

Diffusion is computationally very expensive. For testing, when you do several simulations, it is possible to define

fixed concentration profiles, linear or gaussian, along the X or the Z axis. To get the concentrations and the

gradients of theses "artificial" substances you use the same methods in PhysicalNode than for real Substances.

ECM’s method for adding artificial substances :

public void addArtificialGaussianLayerZ(
Substance substance , double maxConcentration , double zCoord , double sigma)

// d e f i n e s a gaus s i an con c en t r a t i on o f a Substance a long the Z ax i s ( i e uni form along X,Y ax i s )

public void addArtificialLinearGradientZ(
Substance substance , double maxConcentration , double zCoordMax , double zCoordMin)

// De f i n e s a l i n e a r a r t i f i c i a l c on c en t r a t i on between two po i n t s a long the Z ax i s .
// Outs ide t h i s i n t e r v a l the va lue w i l l be 0 . Between the boundar i e s the va lue i s the l i n e a r
// i n t e r p o l a t i o n between the maximum va lue and 0 .

public void addArtificialGaussianLayerX(
Substance substance , double maxConcentration , double xCoord , double sigma)

public void addArtificialLinearGradientX(
Substance substance , double maxConcentration , double xCoordMax , double xCoordMin)

We demonstrate the functioning of these artificial substances by using them as guidance cues and branching

factor in the extension of a neurite arbor (demo in the file ini.cx3d.simulations.NeuriteChemoAttraction).

In the main() methods, we define an artificial concentration of a particular substance A, with a gaussian profile

along the Z axis. In this case we use a different constructor for Substance; indeed the concentration is fixed

by the gaussian function, and so the diffusion and degradation constant are not taken into account. Instead we
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define a color for the visualization:

ECM ecm = ECM.getInstance ();
Substance attractant = new Substance("A", Color.red);
ecm.addArtificialGaussianLayerZ(attractant , 1.0, 400.0 , 160.0);

We then instantiate a cell, the soma of which extends a neurite like we have described previously. In this neurite,

we insert a module that chooses the gradient as growth direction, and as branching signal. The run() method

goes like this:

public void run() {
PhysicalObject physical = super.cellElement.getPhysical ();
double concentration = physical.getExtracellularConcentration(substanceID );
double [] grad = physical.getExtracellularGradient(substanceID );

// some parameters
double concentrationThreshold = 0.3;
double bifurcationCoefficient = 0.005;
double oldDirectionnWeight = 1.0;
double gradientWeight = 0.2;
double randomnessWeight = 0.6;

// 1) movement
if(physical.getExtracellularConcentration(substanceID)> concentrationThreshold)

grad = new double [] {0.0, 0.0, 0.0};

double [] newStepDirection = add(
scalarMult(oldDirectionWeight , direction),
scalarMult(gradientWeight , normalize(grad)),
randomNoise(randomnessWeight ,3));

double speed = 100;
physical.movePointMass(speed , newStepDirection );

direction = normalize(add(scalarMult (5, direction),newStepDirection ));

// 2) branching based on conc en t r a t i on :
if(ecm.getRandomDouble ()< concentration* bifurcationCoefficient ){

(( NeuriteElement)cellElement ). bifurcate ();
}

}

Note :

1) The method elongates the neurite by moving according to the gradient. But instead of taking directly the

gradient as movement direction, we make a weighted sum combining the previous movement steps, some random

perturbation and the gradient. You can change the different weights to see the effects on the branching pattern.

2) For the neurites not to stay absolutely at the peak of concentration, we disable the gradient detection (we

set it to zero) in a region around the peak (i.e. if the concentration is higher than a defined threshold).

19



Exercises :

1) Define a vertical ("X") and and horizontal ("Z") artificial gaussian gradient, and modify the class to attract

the neurite at the intersection of the two substances, and ramify there.

Figure 5: ini.cx3d.simulations.tutorial.NeuriteChemoAttraction: The extracellular space is pre-patterned with
an artificial concentration profile of a substance, which serves as guidance cue and branching factor. (left) Because there
growth direction is always influenced by the concentration gradient, the branches tend to stay in region with the highest
concentration. (right) If we change the rules, so that above a certain concentration threshold the growing branches are
no longer influenced by the gradient, we see that the arbor is more spread.

4.3 Intracellular Substances

PhysicalObject can contain a sub class of Substance : IntracellularSubstance, that is used for represent-

ing intracellular and membrane bound substances. This class has two additional fields:

1) visibleFromOutside: if true, the substance presence can be detected by neighboring objects, and represents

thus a membrane substance; if false, it is a purely intracellular substance.

2) volumeDependant: when an intracellular substance is secreted at a certain rate (quantity per time), this has

to be transformed into an intracellular concentration. If this field is true, the real volume of the sphere or

cylinder is used, which can be useful to measure a total cell volume for instance. If false, we use the length

of the physical object and not its volume. It avoids for instance that too much substance is trapped into the soma.

As for its supercalss, a IntracellularSubstance has to be declared to ECM, and then is produced and can
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be probed from the following methods (note: there is no intracellular or membrane gradient!) :

PhysicalObject.getIntracellularConcentration(String substanceId)
PhysicalObject.modifyIntracellularQuantity(String id , double quantityPerTime)

PhysicalObject.getMembraneConcentration(String substanceId)
PhysicalObject.modifyMembraneQuantity(String id, double quantityPerTime)

Intracellular substances diffuse automatically inside the cells along the cylinders chain (unless the diffusion

constant is set to 0.0)

As illustration, we present a model of production-consuption. Some necessary substance is secreted intracel-

lularly by the soma, and diffuses along the chain of physical objects. The tip of each branch elongates (and

consumes) at a speed proportional to the concentration of the substance in its terminal segment. In honor of

Dr vanOoyen we call the substance T , for tubulin.

main method :

// d e f i n i n g the templa te s f o r the i n t r a c e l l u l a r subs tance
double D = 1000; // d i f f u s i o n c s t
double d = 0.01; // degradat i on c s t
IntracellularSubstance tubulin = new IntracellularSubstance("T",D,d);
tubulin.setVolumeDependant(false );
ecm.addNewIntracellularSubstanceTemplate(tubulin );
// g e t t i n g a c e l l
Cell c = CellFactory.getCellInstance(new double [] {0,0,0});
c.setColorForAllPhysicalObjects(Param.RED);
// i n s e r t product ion module
SomaElement soma = c.getSomaElement ();
soma.addLocalBiologyModule(new InternalSecretor("T", secretionRate ));
// i n s e r t growth cone module
NeuriteElement ne = c.getSomaElement (). extendNewNeurite(new double [] {0,0,1});
ne.getPhysical (). setDiameter (1.0);
ne.addLocalBiologyModule(new GrowthCone ());
// s imu la t e i t
Scheduler.simulate ();

run method of the InternalSecretor class, the secretion module :

super.cellElement.getPhysical (). modifyIntracellularQuantity(
substanceId , secretionRate );

run method of the GrowthCone class, the growth module :

double speedFactor = 500;
double consumptionFactor = 100;
double bifurcationProba = 0.003;
double min = 100; // minimal c on c en t r a t i on f o r movement

PhysicalCylinder cyl = (PhysicalCylinder )(super.cellElement.getPhysical ());
double concentration = cyl.getIntracellularConcentration("T");
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if(concentration <0.07)
return;

double speed = concentration*speedFactor;
cyl.movePointMass(speed , add(cyl.getAxis(), randomNoise (0.5 ,3)));
cyl.modifyIntracellularQuantity("T", -concentration*consumptionFactor );

if(ECM.getRandomDouble ()< bifurcationProba)
(( NeuriteElement )( super.cellElement )). bifurcate ();

Note :

There is a competition between several growth cones, and so the more branches there are, the slower they go.

But the occurrence of bifurcations per time per growth cone is constant. The branches become then shorter.

Exercises :

1) Make the branching probability also depend on the concentration of T . Attribute different "cost" to branch-

ing, and look at the difference in arborization.

2) Make the branching dependent on a second substance secreted in the soma.

3) Design a module for active transport of intracellular substances. (Note: If you want to have a copy of that

module in every NeuriteElement, you need both isCopiedWhenNeuriteElongates() and

isCopiedWhenNeuriteBranches() to return true).

4.4 Membrane Substances

For a membrane-bound substances, we also use instances of the IntracellularSubstance class, but we have

to make them detectable from other physical objects than the one they stays in. For this we use the the method

IntracellularSubstance.setVisibleFromOutside(.). These substances are then secreted and detected in

physical objects with the same methods than the ones described above (for purely intracellular substances).

To illustrate the use membrane substances we write a module ini.cx3d.simulations.tutorial.MembraneContact

that checks for the presence of a membrane marker called "A" on neighboring objects in close contact. If some

"A" is detected, all modules are removed from the cell element containing this detector.

public void run() {
PhysicalObject physical = super.cellElement.getPhysical ();
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for (PhysicalObject o: physical.getPhysicalObjectsInContact ()) {
if(o.getMembraneConcentration("A")>1){

physical.setColor(Param.YELLOW );
super.cellElement.cleanAllLocalBiologyModules ();

}
}

}

Note :

1) The method iPhysicalObject.getPhysicalObjectsInContact() returns all the instances of physical ob-

jects that are neighbors in the triangulation and that are close enough to be considered as in contact.

2) As you can see, PhysicalObject.getMembraneConcentration(.) returns the concentration of a membrane

bound chemical, i.e. an intracellular substance that is visible from outside.

3) All modules can be removed at once with CellElement.cleanAllLocalBiologyModules(). In our example

the cell element also contains a movement module, it is also removed, and the movement stops.

In the main method we declare the substance, set some physical boundaries, and create two types of cells: some

immobile ones that express "A" at their surface, and some mobile with the contact detector:

public static void main(String [] args) {
ECM ecm = ECM.getInstance ();

IntracellularSubstance adherence = new IntracellularSubstance("A" ,0,0);
adherence.setVisibleFromOutside(true);
adherence.setVolumeDependant(false );
ecm.addNewIntracellularSubstanceTemplate(adherence );

ecm.setArtificialWallsForSpheres(true);
ecm.setBoundaries (-150, 150, -150, 150, -100, 100);

for(int i = 0; i<10; i++){
Cell c = CellFactory.getCellInstance(randomNoise (100, 3));
c.setColorForAllPhysicalObjects(Param.RED);
c.getSomaElement (). getPhysical (). modifyMembraneQuantity("A", 100000);
c.getSomaElement (). getPhysicalSphere (). setInterObjectForceCoefficient (0.0);

}
for(int i = 0; i<10; i++){

Cell c = CellFactory.getCellInstance(randomNoise (50, 3));
c.getSomaElement (). addLocalBiologyModule(new MembraneContact ());
c.getSomaElement (). addLocalBiologyModule(new SomaRandomWalkModule ());
c.setColorForAllPhysicalObjects(Param.VIOLET );

}
Scheduler.simulate ();

}

Note :
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1) The method IntracellularSubstance.setVisibleFromOutside(true) is essential for making a membrane

substance, but otherwise the procedure is the same than for purely intracellular substance.

2) ecm.setArtificialWallsForSpheres(true) puts some limitation on where a PhysicalSphere can move.

It forces the wandering cells to stay within these limits. You set the size of the permitted volume with

ecm.setArtificialWallsBoundaries(). that takes as argument the minimal and maximum value allowed

along the x, y, and z axis.

3) In this example we are not interested in the dynamics of substance production, we just want the substance

to be present on some spheres. Therefore we secrete once a (very) large amount with

PhysicalObject.modifyMembraneQuantity("A", 100000). After 1 time step, the quantity is 105 [quantity/

time] * 10−2 [time] = 103 in each cell.

4.5 Gene Substances

Cell instances can also contain some specific substances. They are supposed to represent the proteins expressed

from a gene, and therefore are termed GeneSubstance, a class designed by Sabina Pfister that also derives from

Substance. I won’t describe the specificities of these substances here.

24



5 Synapses

Biological synapses are composed of a pre-synaptic and a post-synaptic part. In cortical neurons these usually

consist of a bouton (on an axon) and a spine (on a dendrite). In CX3D, synapses also consist of a spine and

a bouton, each with a physical and a biological part (like for the PhysicalObject and the CellElement). All

classes described in this section are in the package ini.cx3d.synapse.

Physical part

For the physical part of synapses we use the classes PhysicalSpine and PhysicalBouton (that both extend

the abstract Excrescence). Note that these classes do not derive from PhysicalObject, and so they don’t

contain a node of the Delaunay triangulation, and they don’t exert any force. Instead, they are attached to a

PhysicalSphere or a PhysicalCylinder, to which they can be added with the method PhysicalObject.addExcrescence(.).

One end of an excrescence is fixed on the physical object it belongs to, and follows it in case of displacement.

The other end of an excrescence is either free, or linked to another excrescence, in which case they define a

synapse.

The position on the physical object and the orientation of an excressence is described in polar coordinates,

which we’ll discuss in the next section.

Biological part

Each PhysicalSpine is linked to a BiologicalSpine, and each PhysicalBouton to a BiologicalBouton.

Spines should be only on dendritic neurite elements, and boutons on axonal neurite element. To define if a neu-

rite element is part of a dendrite or of an axon, we use the following method: NeuriteElement.setIsAnAxon(.)

with a boolean argument.

We consider two types of cells in CX3D: excitatory and inhibitory. A synapse in which the presynaptic cell is

excitatory (resp. inhibitory), is an excitatory (inhibitory) synapse. The type of the cell is set with the method

Cell.setNeuroMLType() that takes as argument Cell.ExcitatoryCell or Cell.InhibitoryCell.

Network export

At any time during the simulation, it is possible to parse all cell elements, and to collect informations about all

the synaptic connections. A file summarizing the connectivity of the grown network can be exported in an XML

document, following the NeuroML specification. It can then be used to start a simulation in a point neuron

simulator like PCSIM.
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Single synapse Formation

To make a synapse between two neurites, one has to 1) instantiate a pair physical spine - biological spine and a

pair physical bouton - biological bouton on the physical cylinders of two adjacent neurites, and 2) link them with

: Excrescence.synapseWith(Excrescence e, boolean createPhysicalBond). If createPhysicalBond is

true, a spring is added to fix the distance between the two PhysicalCylinders supporting the bouton and the

spine. Physical bonds are discussed in the next section.

The class ini.cx3d.simulations.tutorial.SimpleSynapse demonstrates the steps for the formation of a

single synapse.

Automatized synapse formation

Coding explicitly each synapse formation is very tedious. Instead, you can use the following methods of

NeuriteElement:

public void makeSpines(double interval)
// Makes s p i n e s ( the phy s i c a l and the b i o l o g i c a l part ) on t h i s NeuriteElement ,
// with an average s p e c i f i e d i n t e r v a l .

public void makeBoutons(double interval)
// Make boutons ( the phy s i c a l and the b i o l o g i c a l part ) on t h i s Neur iteElement .

public int synapseBetweenExistingBS(double probabilityToSynapse ){
// Links the f r e e boutons o f t h i s n e u r i t e e lement to ad j a c en t s f r e e s p i n e s

Or you can make spines and connections in one command with this static method of the class

ini.cx3d.synapses.ConnectionsMaker:

extendExcressencesAndSynapseOnEveryNeuriteElement ().

Exercise :

Create 4 excitatory cells, 4 inhibitory cells, each one extending one axonal and one dendritic tree, and create

synapse between them. (One example is in tutorial.SmallNetwork).
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Figure 6: Spines, boutons and synapses. The figure shows the branches made by two "cortical" neurons in a 3D
environment. Each neuron has an axon (violet) and an apical dendrite (yellow). The neurites extend some spines and
boutons, in random direction. When a bouton and a spine have their free extremity within a small distance, a synapse
is formed. To ensure that two branches sharing a synapse stay close one to another, a physical link is added between
them (black), at the synapse location.

6 Programming interface

6.1 ini.cx3d

Param

Contant Value Description
SIMULATION_TIME_STEP 0.01 [h] ∆t
SIMULATION_MAXIMAL_DISPLACEMENT 3 [µm] maximum possible physical displacement during one time step

(needed for stability reasons, should not be changed).
NEURITE_MAX_LENGTH 15 [µm] maximum length of a cylinder

before it is automatically spit into two.
NEURITE_MIN_LENGTH 12 [µm] shortest length for a cylinder before it is fused

with its mother proximal cylinder.
NEURITE_DEFAULT_LENGTH 1 [µm]
NEURITE_DEFAULT_DIAMETER 1 [µm]
NEURITE_DEFAULT_ADHERENCE 0.1 static friction.
NEURITE_DEFAULT_MASS 1 kinetic friction.
NEURITE_DEFAULT_SPRING_CONSTANT 10.0
NEURITE_DEFAULT_TENSION 0.0
SOMA_DEFAULT_DIAMETER 1 [µm]
SOMA_DEFAULT_ADHERENCE 0.4 static friction.
SOMA_DEFAULT_MASS 1 kinetic friction.
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6.2 ini.cx3d.simulations

ECM

getECMtime() returns the time of the simulation
setRandomSeed(double seed) initializes the random number generator
getRandomDouble() returns a number between 0 and 1
getGaussianDouble(double m, double sd) retruns nb from gaussian distribution
setBoundaries(double x1, x2, y1, y2, z1, z2) Sets the boundaries of a pseudo wall,

that maintains the PhysicalObjects in a closed volume
setArtificialWallsForSpheres(boolean b) If set to true, the PhysicalSpheres tend to stay inside

a box, who’s boundaries are set with setBoundaries()
setArtificialWallsForCylinders(boolean b) If set to true, the PhysicalCylinders tend to stay inside

a box, who’s boundaries are set with setBoundaries()
getPhysicalNodeInstance(double[] loc) Adds a "simple" PhysicalNode

(with its SON) at a desired location
addNewSubstanceTemplate(Substance s) Registers an extra-cellular substance
addNewIntracellularSubstanceTemplate( Registers an intra-cellular substance
IntracellularSubstance s)

addArtificialGaussianConcentrationZ( Defines a bell-shaped artificial concentration in ECM,
String name, double maxConc, mean, sigma) along the Z axis
addArtificialLinearConcentrationZ( Defines a linear artificial concentration in ECM,
String name, double maxConc, coordMax, coordMin) between two points along the Z axis

(idem for X-axis)

6.3 ini.cx3d.physics

PhysicalNode

isAPhysicalObject() returns true if it is a physical sphere or a physical cylinder.
isAPhysicalSphere() returns true if it is a physical sphere.
isAPhysicalCylinder() returns true if it is a physical cylinder.
getExtracellularConcentration(String id) concentration at physical node’s center
getConvolvedConcentration(String id) average concentration over node and neighbors
getExtracellularConcentration( interpolated concentration
String id, double[] location)

getExtracellularGradient(String id) gradient at node’s center
modifyExtracellularQuantity( adds rate·∆t to the quantity present in this node,
String id, double rate) and updates the concentration
Substance getSubstanceInstance(Substance s) Returns the INSTANCE of Substance stored in this node,

with the same id than the Substance given as argument.
If there is no such Instance, a new one is created and returned
(used for ECMChemicalReaction).
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PhysicalObject

getCellElement()

set/getMass() the mass, i.e. the kinetic friction
(scales the movement amplitude,
therefore is considered as the mass)

set/getAdherence() the adherence to the extracellular matrix,
i.e. the static friction (the minimum
force amplitude needed for triggering a movement).

set/getVolume()

set/getDiameter()

changeVolume(double speed) modifies the volume by speed ·∆t.
changeDiameter(double speed) modifies the volume by speed ·∆t.
set/getColor()

getMassLocation()

moveMassLocation(double speed, double[] direction) active displacement of the point mass
double speed, double[] direction) (direction is normalized)
getIntracellularConcentration(String substanceId

modifyIntracellularQuantity(

String id, double quantityPerTime)

getMembraneConcentration(String substanceId

modifyMembraneQuantity(

String id, double quantityPerTime)

isInContact(PhysicalObject o) retruns true is the two objects are
close enough to exert a force on each other.

PhysicalSphere

getNeuriteElement()

getMother() returns the proximal physical object
getDaughterLeft() returns the 1st distal cylinder

(if null: we’re a terminal cylinder)
getDaughterRight() returns the proximal physical object

(if null: not proximal to branch point)
set/getRotationalInertia() inertia for rotation
getActualLength()

getRestingLength()

get/setSpringConstant()

getTension()

setRestingLengthForDesiredTension(

double tensionWeWant)

getSpringAxis() vector from proximal end to distal end
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PhysicalCylinder

getNeuriteElement()

getMother() returns the proximal physical object
getDaughterLeft() returns the 1st distal cylinder

(if null: we’re a terminal cylinder)
getDaughterRight() returns the proximal physical object

(if null: not proximal to branch point)
set/getRotationalInertia() inertia for rotation
getActualLength()

getRestingLength()

get/setSpringConstant()

getTension()

setRestingLengthForDesiredTension(

double tensionWeWant)

getSpringAxis() vector from proximal end to distal end

6.4 ini.cx3d.localBiology

CellElement
getCell()

getPhysical() returns the associated physical object.
isASomaElement()

isANeuriteElement()

addLocalBiologyModule(LocalBiologyModule m)

removeLocalBiologyModule(LocalBiologyModule m)

cleanAllLocalBiologyModules()

getLocation() returns point mass location of physical obj.
move(double speed, double[] direction moves point mass of associated physical obj.

SomaElement
getPhysicalSphere()

extendNewNeurite( returns a NeuriteElement.
double diameter, double phi, double theta) (spherical coordinates)
extendNewNeurite(

double diameter, double[] direction) (global cartesian coordinates)
extendNewNeurite(double[] direction) idem
extendNewNeurite(double diameter) random direction
extendNewNeurite() idem
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NeuriteElement

getPhysicalCylinder()

isAnAxon() return true if it is considered an axon
setIsAnAxon(boolean a) defines if it is considered

(only changes in this NeuriteElement.)
elongateTerminalEnd( if direction points backward,
double speed, double[] direction) no movement.
retractTerminalEnd(double speed)

branch() splits the compartment into two, and adds a side branch
same method exists with direction and/or diameter
bifurcate() adds two small distal cylinders (only for
same method exists with direction and/or diameter distal compartment).
makeSingleSpine()

makeSingleSpine(double d) distance from proximal end
makeSpines(double i) average interval between two spines
makeSingleBouton()

makeSingleBouton(double d) distance from proximal end
makeBoutons(double i) average interval between two spines

6.5 ini.cx3d.cells

Cell
getSomaElement()

set/getNeuroMLType() Cell.InhibitoryCell or Cell.ExcitatoryCell
addCellModule(CellModule m)

removeCellModule(CellModule m)

cleanCellModules()

divide( returns a Cell
double volumeRatio, double phi, double theta) (spherical coordinates)
divide(

double volumeRatio, double[] direction) (global cartesian coordinates)
divide(double[] direction) idem
divide(double volumeRatio) random direction
divide() idem
setColorForAllPhysicalObjects(Color color)
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