A Cortical Network for Face Perception

Alumit Ishai

Institute of Neuroradiology, University of Zurich, Switzerland

Address for correspondence:
Alumit Ishai, PhD
Professor of Cognitive Neuroscience
University of Zurich
Raemistrasse 66
8001 Zurich, Switzerland
Phone: +41-44-6353440
FAX: +41-44-6353449
Email address: alumit.ishai@uzh.ch
Face perception elicits activation within a distributed cortical network in the human brain. The network includes visual (“core”) regions, which process invariant facial features, as well as limbic and prefrontal (“extended”) regions that process changeable aspects of faces. The response to faces is modulated by cognitive factors such as attention, visual imagery, emotion, and sexual preference. Analysis of effective connectivity reveals that the major entry node in the face network is the lateral fusiform gyrus and that the functional coupling between the core and the extended systems is content-dependent. A model for face perception is proposed, which posits that the flow of information through the network is shaped by cognitive demands.

Face recognition is a highly developed skill in primates and the cognitive development of face perception suggests a special status for face processing. Shortly after birth, infants prefer to look at faces longer than at other objects (Morton and Johnson, 1991). The predilection of infants to imitate facial expressions at a very early age (Meltzoff and Moore, 1977), further suggests that face perception plays a central role in developing social interaction skills and language. It is therefore no surprise that face perception is mediated by a specialized neural system in the human brain.

In many fMRI studies of face perception, a localizer is used to identify the face-selective region in the fusiform gyrus, the “FFA”, based on stronger response to faces than to assorted common objects (Kanwisher et al., 1997). Although the FFA also responds significantly to other objects (Ishai et al., 1999; 2000a; Haxby et al., 2001), it is commonly believed that the FFA is a face-selective “module”, namely a cortical region dedicated for the visual analysis of face stimuli. But is the FFA sufficient or even necessary for face perception? Functional MRI studies in which neural activity is
not manifested by perceptual awareness provide evidence against sufficiency, whereas studies in which perceptual awareness is not caused by neural activity provide evidence against necessity.

A distributed cortical network for face perception

The recognition of facial identity is based on invariant facial features, whereas animated aspects of the face, such as speech-related movement and expression, contribute to social communication. When looking at faces, we rapidly perceive the gender, expression, age and mood. Processing information gleaned from the faces of others therefore requires the integration of activity across a network of cortical regions. Converging empirical evidence suggests that face perception is mediated by a distributed neural system (Sergent et al., 1992; Courtney et al., 1996; Haxby et al., 2000; Ishai et al., 2004, 2005). The cortical network for face perception includes the IOG and lateral FG, extrastriate regions that process the identification of individuals (Kanwisher et al., 1997; Ishai et al., 2000a; Grill-Spector et al., 2004; Rotshtein et al., 2005); the superior temporal sulcus (STS), where gaze direction and speech-related movements are processed (Calder et al., 2007; Hoffman and Haxby, 2000; Puce et al., 1998); the amygdala and insula, where facial expressions are processed (Breiter et al., 1996; Morris et al., 1996; Phillips et al., 1997; Vuilleumier et al., 2001; Ishai et al., 2004), and where a vigilant attitude toward unfamiliar people is maintained (Gobbini and Haxby 2007); the inferior frontal gyrus (IFG), where semantic aspects are processed (Leveroni et al., 2000; Ishai et al., 2000b; 2002), and regions of the reward circuitry, including the nucleus accumbens and orbitofrontal cortex (OFC), where facial beauty and sexual relevance are assessed (Aharon et al., 2001; O'Doherty et al., 2003; Kranz and Ishai, 2006; Ishai, 2007). The existence of multiple face-selective regions in the human brain is also corroborated by intracranial recordings in epileptic patients undergoing brain surgery. Face-selective potentials were found in several sites
along ventral occipitotemporal and lateral temporal cortices (Allison et al., 1999; McCarthy et al., 1999; Puce et al., 1999; Barbeau et al., 2008), as well as the amygdala and prefrontal structures (Halgren et al., 1994a; 1994b).

When activation elicited by face stimuli is compared with activation evoked by scrambled faces, a distributed neural system of multiple, bilateral regions is revealed (Figure 1). The activation within visual, limbic and prefrontal face-selective regions is stimulus- (e.g., unfamiliar, famous, neutral and emotional faces) and task- (e.g., passive viewing, attractiveness rating) independent (Ishai et al., 2005; Kranz and Ishai, 2006). These consistent and replicable distributed patterns of activation are what make faces special: the neural signature of face perception is not manifested by activation solely in the FG, but rather, by activation within multiple regions that comprise a network. It is therefore surprising that despite the compelling evidence in favor of a network, virtually all published studies of face perception focus on activation in the FG (or on the STS and the amygdala in studies of social cognition and emotion).

Face perception and cortical connectivity

With the identification and localization of all face-responsive regions, the effective connectivity within this network can be quantified. In a recent study, conventional SPM analysis (Friston et al., 1995) was combined with Dynamic Causal Modeling (DCM, Friston et al., 2003) to investigate the neural coupling and functional organization between and within the core and extended systems. It has been found that during face viewing, the core system is functionally organized in a hierarchical, feed-forward architecture, with the IOG exerting influences on both the FG and STS. Moreover, the FG, but not the STS, exerted a strong causal influence on the extended system, namely the
amygdala, IFG and OFC. Finally, content-specific alterations in functional coupling were observed within this network: Viewing emotional faces increased the coupling between the FG and the amygdala, whereas viewing famous faces increased the coupling between the FG and the OFC cortex. The FG is therefore a major entry node in the cortical network that mediates face perception (Fairhall and Ishai, 2007). Previous DCM studies of face perception have also shown that effective connectivity between regions is task-specific. For example, viewing faces was associated with an increase in bottom-up, forward connectivity from extrastriate face-selective regions to prefrontal cortex, whereas the generation of mental images of faces was associated with an increase in top-down, backward connectivity from prefrontal to extrastriate regions (Mechelli et al., 2004). Similarly, perceptual decisions about faces resulted in an increase in top-down connectivity from ventral medial frontal cortex to the fusiform gyrus (Summerfield et al., 2006).

A new model for face perception

As we currently do not have sufficient temporal information about the dynamics of face processing in the human brain, it is premature to propose a new functional model for face perception that integrates all available data. When Bruce and Young proposed their influential model for the recognition of familiar faces, they wrote: “In understanding face processing a crucial problem is to determine what uses people need to make of the information they derive from faces” (Bruce & Young, 1986, P. 306). In line with this statement and with the above mentioned DCM studies (Mechelli et al., 2004; Summerfield et al., 2006; Fairhall & Ishai, 2007), I have recently proposed a working model for face perception that accounts for existing findings and from which new predictions are derived (Ishai, 2008). The model depicted in Figure 1 postulates bidirectional connections between all visual, limbic and prefrontal face-selective regions (such large-scale
integration could be mediated by synchronization of activity, as suggested by Rodriguez et al., 1999). The model further assumes that the flow of information through the face network is shaped by cognitive demands, namely that the effective connectivity between regions depends on the nature of faces and task at hand (e.g., when we look for a friend in a crowded place, we have to match incoming visual input with faces stored in long-term memory, whereas when performing laboratory experiments such as gender discrimination, we have to focus on or attend to specific facial features.) Consequently, several new testable predictions are suggested: Focusing attention on gaze direction would likely increase the coupling between the STS and the FG; Viewing animated faces would increase the effective connectivity between the STS and the IFG/OFC; Viewing disgusted faces would increase the coupling between the FG and the insula. Consistent with a recent study, which showed that the prefrontal cortex generates predictions that influence object processing in extrastriate regions (Bar et al., 2006), the model also predicts that an indeterminate facial input will increase the top-down connectivity from the OFC to the FG. Future studies will determine the extent to which various task demands are indeed associated with differential coupling among face-selective regions and the temporal dynamics of these activation patterns.

Prosopagnosia and activation in the face network

Prosopagnosia is the inability to recognize familiar faces (Whitely and Warrington, 1977; Damasio et al., 1982; Damasio et al 1990; Behrmann et al., 1992). Although most patients have bilateral lesions (Damasio et al., 1982), right unilateral lesions in ventral occipitotemporal cortex are sufficient to produce prosopagnosia (De Renzi, 1986; Landis et al., 1986). Some prosopagnostic patients, despite their profound inability to recognize faces, exhibit normal patterns of activation in
the FFA (e.g., Marotta et al., 2001; Avidan et al., 2005), suggesting that activation in this region is not sufficient for face recognition, which likely depends on integration across cortical regions. A recent study has shown that normal fMRI activation in ventro-occipital regions of congenital prosopagnosics is insufficient for intact face recognition, and that the functional impairment in congenital prosopagnosia is due to disrupted information propagation between the core and the extended face processing network (Avidan and Behrmann, 2009).

Intriguingly, PS, a patient with bilateral and asymmetrical lesions in right inferior occipital gyrus (IOG) and left fusiform gyrus (FG), is prosopagnosic despite her intact left IOG and right FG (Rossion et al., 2003; Sorger et al., 2007), further suggesting that bilateral and distributed activation is necessary for face recognition. Adaptation experiments in this patient have shown that although her neural response to repeated objects in extrastriate object-selective regions was reduced, repeated and unrepeated faces evoked similar activation in the FG (Schiltz et al., 2006). It therefore seems that while activation in the FFA per se is not sufficient, adaptation in this region may be necessary for face recognition.

Face perception in non-human primates

Electrophysiological studies in non-human primates revealed face-selective neurons not only in temporal cortex (e.g., Bruce et al., 1981; Perrett et al., 1982) but also in orbitofrontal (Thorpe et al., 1983) and prefrontal (Wilson et al., 1993) cortices. Furthermore, recent fMRI studies in behaving monkeys have revealed activation in multiple face-selective regions in visual (Pinsk et al., 2005; Tsao et al., 2006) as well as limbic and prefrontal cortices (Hadj-Bouziane et al., 2008). The exciting technical development of fMRI-guided electrophysiology (e.g., Tsao et al., 2006) will
enable not only the identification and functional characterization of all face-selective regions in the macaque brain, but also the exploration of the homology between the face networks in monkey and man (see Tsao et al., 2008). Functional MRI-guided electrophysiology would provide data with superb spatial and temporal resolutions for thorough analyses of functional and effective connectivity within the cortical network for face perception. Future neuroanatomical models of face recognition will therefore have to integrate findings from human and non-human primates and from various imaging modalities.

Acknowledgments
Alumit Ishai is supported by Swiss National Science Foundation grant 3200B0-105278 and Swiss National Center for Competence in Research: Neural Plasticity and Repair for their support.
Figure 1: Top: Viewing faces elicits activation within a distributed cortical network that includes visual, limbic and prefrontal regions. Coronal sections, taken from a representative subject, illustrate activation within the core (IOG, FG, STS) and extended (AMG, IFG, OFC) systems. Coordinates are in the Talaraich space.

Bottom: A new model for face perception. Neural coupling among face-selective region is stimulus- and task-dependent. The model assumes reciprocal connections between all visual, limbic and prefrontal face-selective regions (although the strength of the connections may not be symmetrical.) Viewing emotional faces increases the effective connectivity between the FG and the AMG (yellow), whereas viewing famous, attractive faces increases the coupling between the FG and the OFC (blue). New predictions are shown in dashed arrows: Attention to gaze direction would increase the coupling between the STS and the FG (orange); Viewing animated faces would increase the coupling between the STS and the IFG/OFC (green); Viewing indeterminate, low-spatial frequency faces would result in increased effective connectivity from the OFC to the FG (red).
References

