
Theory and Tools for the Conversion of Analog to
Spiking Convolutional Neural Networks

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, and Michael Pfeiffer
Institute of Neuroinformatics

University of Zurich and ETH Zurich
Winterthurerstrasse 190

8057 Zurich, Switzerland
{rbodo,iulialexandra,yuhu,pfeiffer}@ini.uzh.ch

Abstract

Deep convolutional neural networks (CNNs) have shown great potential for numer-
ous real-world machine learning applications, but performing inference in large
CNNs in real-time remains a challenge. We have previously demonstrated that tra-
ditional CNNs can be converted into deep spiking neural networks (SNNs), which
exhibit similar accuracy while reducing both latency and computational load as a
consequence of their data-driven, event-based style of computing. Here we provide
a novel theory that explains why this conversion is successful, and derive from it
several new tools to convert a larger and more powerful class of deep networks into
SNNs. We identify the main sources of approximation errors in previous conversion
methods, and propose simple mechanisms to fix these issues. Furthermore, we
develop spiking implementations of common CNN operations such as max-pooling,
softmax, and batch-normalization, which allow almost loss-less conversion of arbi-
trary CNN architectures into the spiking domain. Empirical evaluation of different
network architectures on the MNIST and CIFAR10 benchmarks leads to the best
SNN results reported to date.

1 Introduction

Computation in Spiking Neural Networks (SNNs) is event-based and data-driven, and thus neurons
only update whenever new relevant information needs to be processed. This contrasts with the frame-
based computations performed by traditional Analog Neural Networks (ANNs), which process the
entirety of the input, followed by computing all neuronal activations layer-by-layer before producing
a final output. Recent results such as (Neil et al., 2016; Farabet et al., 2012; O’Connor et al.,
2013; Zambrano and Bohte, 2016) have shown that the event-based mode of operation in SNNs is
particularly attractive for reducing latency and computational load in deep neural networks, which
represent the state of the art in most machine learning benchmarks (LeCun et al., 2015). Deep SNNs
can be queried for results already after the first output spike is produced, unlike ANNs where the
result is available only after all layers have been completely processed (Diehl et al., 2015). SNNs
are also naturally suited to process input from event-based sensors (Liu et al., 2014; Posch et al.,
2014), but even for classical frame-based machine vision applications such as object recognition
or detection, SNNs have been shown to be accurate, fast, and efficient, in particular when run on
neuromorphic hardware platforms (Esser et al., 2016; Neil and Liu, 2013; Stromatias et al., 2015).
SNNs could thus play an important role in supporting, or in some cases replacing deep ANNs in tasks
where fast and efficient classification in real-time is crucial, such as detection of objects in larger and
moving scenes, tracking tasks, or activity recognition (Hu et al., 2016).

Workshop "Computing with Spikes", 29th Conference on Neural Information Processing Systems (NIPS 2016),
Barcelona, Spain.

ar
X

iv
:1

61
2.

04
05

2v
1 

 [
st

at
.M

L
] 

 1
3 

D
ec

 2
01

6



Training Deep SNNs directly from their spiking activity is notoriously difficult, and only recently
methods for backpropagation-like training of SNNs have been developed (Lee et al., 2016). However,
a number of studies have shown that SNNs can be successfully constructed by converting conven-
tionally trained ANNs, relating the activations of ANN units to firing rates of spiking neurons. The
purpose of this study is to identify a number of challenges in the conversion of networks through a
novel theory, and proposing new mechanisms which significantly improve the performance of deep
SNNs.

Previous work on ANN-to-SNN conversion starts with (Perez-Carrasco et al., 2013), where CNN
units were translated into biologically inspired spiking units with leaks and refractory periods, aiming
for processing of inputs from event-based sensors. (Cao et al., 2015) suggested a close link between
the transfer function of a spiking neuron, i.e. the relation between input current and output firing
frequency to the activation of a rectified linear unit (ReLU), which is nowadays the standard model
for units in ANNs. They achieved good performance on conventional computer vision benchmarks,
converting a class of CNNs that was restricted to having zero bias and only average-pooling layers.
Their method was improved by (Diehl et al., 2015), who achieved nearly loss-less conversion of
ANNs for the MNIST task through weight normalization. This technique rescales the weights to avoid
approximation errors in SNNs due to either excessive or too little firing. (Hunsberger and Eliasmith,
2015) introduced a conversion method where noise injection during training improves the robustness
to approximation errors of the SNN with biologically more realistic neuron models. (Esser et al.,
2016) demonstrated an approach that optimized CNNs for the neuromorphic TrueNorth platform
with low-precision weights and restricted connectivity. Recently, (Zambrano and Bohte, 2016) have
developed adapting SNNs, which encode information with a minimum number of spikes, thereby
achieving good accuracy with an order of magnitude less spikes than in other SNN approaches. All
these approaches showed that SNNs can achieve near state-of-the-art accuracy, while at the same
time improving classification speed, and aiming towards constructing deep SNNs that can run on
low-power neuromorphic platforms.

In this work we investigate in detail the conversion algorithm proposed in (Diehl et al., 2015), which
can convert small ANN models into SNNs with minimal accuracy loss (less than 1% on MNIST).
However, we found that running the same algorithms without modifications on larger networks (e.g.
for CIFAR10) leads to an unacceptable drop in accuracy on the order of 10% or more. In our tests
we identified that the main reason for a drop of performance is a reduction of firing rates in higher
layers, which can arise due to overly pessimistic weight normalization. Furthermore, the algorithms
proposed by (Diehl et al., 2015) and (Cao et al., 2015) had severe restrictions on what kind of CNNs
could be converted. This prevented using features commonly used in the most successful CNNs for
visual classification, such as max-pooling, softmax, batch normalization (Ioffe and Szegedy, 2015), or
even basic features of neuron models such as biases. In the following we first analytically investigate
the problem of ANN-to-SNN conversion in Section 2, before introducing a set of new tools and
tricks that expand the class of networks that can be converted and improve accuracy (Section 3). The
contribution of the proposed methods is evaluated on the CIFAR10 benchmark in Section 4.

2 Theory of Conversion of ANNs into SNNs

In this section we investigate analytically how firing rates in SNNs approximate ReLU activations in
ANNs. This was suggested first by (Cao et al., 2015) as the basis of ANN-to-SNN conversion, but a
theoretical basis for this principle so far has been lacking. From the basic approximation equations
we derive a simple modification of the reset mechanism after spikes, which turns each SNN neuron
into an unbiased approximator of the target function. We assume here a one-to-one correspondence
between ANN units and SNN neurons, even though it is also possible to represent each ANN unit
by a population of spiking neurons. For a network with L layers let Wl, l ∈ {1, . . . , L} denote the
weight matrix connecting units in layer l − 1 to layer l, with biases bl. The number of units in each
layer is M l. In the ANN, ReLU activations of neuron i in layer l are computed according to

ali := max

0,

M l−1∑
j=1

W l
ija

l−1
j + bli

 , (1)

starting with a0 = x as the input, which is assumed to be normalized so that each xi ∈ [0, 1].

2



Each SNN neuron has a membrane potential V li (t), which is driven by the input current

zli(t) := τ

M l−1∑
j=1

W l
ijΘ

l−1
t,j + bli

 , (2)

where Θl
t,i is a step function indicating the occurrence of a spike at time t:

Θl
t,i := Θ(V li (t− 1) + zli(t)− τ), with Θ(x) =

{
1 if x ≥ 0

0 else.
(3)

Every input pattern is presented for T time steps, with time step dt ∈ R+. The highest firing rate
supported by the simulator is given by the inverse time resolution rmax := 1/dt, and input rates
are proportional to the pixel intensity or RGB value. We can compute the firing rate of each SNN
neuron as rli(T ) := N l

i (T )/T , where N l
i (T ) :=

∑T
t=1 Θl

t,i is the number of spikes generated. The
principle of ANN-to-SNN conversion, as introduced in (Cao et al., 2015; Diehl et al., 2015) is that the
firing rates rli should correlate with the original ANN activations ali in (1) such that rli(T )→ alirmax.
This relationship is formalized by introducing a membrane equation for each spiking neuron, and
estimating the mean firing rates rli(T ) in a next step.

Membrane equation The spiking neuron integrates inputs zli(t) until the membrane potential
V li (t− 1) exceeds a threshold τ ∈ R+ and a spike is generated. At that time, the membrane potential
is reset, and here we compare two types of reset: reset to zero, which is used in (Diehl et al., 2015)
always sets the membrane potential back to a baseline, typically zero, whereas reset by subtraction
subtracts the threshold τ from the membrane potential at the time where the threshold is exceeded:

V li (t) =

{ (
V li (t− 1) + zli(t)

) (
1−Θl

t−1,i

)
reset to zero (4a)

V li (t− 1) + zli(t) − τΘl
t−1,i reset by subtraction (4b)

From these membrane equations we can derive slightly different approximation properties for the
two reset mechanisms. For simplicity we first assume that the input currents z1i = τa1i > 0 remain
constant over time, that V li (0) = 0, and analyze only the first hidden layer. In the reset to zero case this
implies that there will always be a constant number of time steps n between spikes of the same neuron,
and the threshold will always be exceeded by the same constant amount ε1i = V 1

i (n)− τ = n · z1i − τ .
The firing rate of this neuron r1i (t) will therefore be rmax/n, but one can easily derive that in an exact
non-time stepped simulation, the threshold would have been crossed earlier, namely at t∗ = n · τ

τ+ε1i
.

Given that τ + ε1i = V 1
i (n) = n · τ · a1i we see that rmax/t

∗ would be the correct estimate of the
firing rate, and the reset to zero mechanism inevitably leads to an approximation error, which appears
as the second term on the right in

r1i (t) = a1i rmax − rmax
ε1i
n · τ

. (5)

This error depends mainly on ε1i and does not go away simply with longer simulation time. For
shallow networks and easy tasks such as MNIST this error seems to be a minor problem, but we have
found that an accumulation of approximation errors in deeper layers degrades the accuracy. We also
see from (5) that larger τ and smaller inputs improve the approximation, at the expense of longer
integration times. This is because ε1i is bounded by z1i if n > 1, and also because n will increase for
smaller inputs. This is further explanation why the weight normalization scheme proposed in (Diehl
et al., 2015), according to which network activations never exceed unity improves performance in
the reset-to-zero case. Another obvious possibility to improve the approximation is to reduce the
simulation time step, but this comes at the cost of increased computational effort.

A simple switch to the reset by subtraction mechanism improves the approximation, and makes the
conversion scheme suitable also for deeper networks. In this case the time between spikes is not
constant, and the membrane potential at any time point is given as V 1

i (T ) = T · z1i − N1
i (T ) · τ .

From this we get N1
i (T ) =

⌊
T ·z1i −V

1
i (T )

τ

⌋
, and can estimate

r1i (T ) =
N1
i (T )

T
=
z1i
τ
− V 1

i (T )

τT
= a1i rmax −

1

τT
V 1
i (T ). (6)

3



This means that the firing rate estimate converges to its target value a1i · rmax, with the only ap-
proximation error due to the discrete sampling. This mechanism therefore leads to more accurate
approximations of the underlying ANN than in the methods proposed in (Cao et al., 2015; Diehl
et al., 2015). We will show later in Section 4 that this results in improved accuracy in larger networks.
A potential problem exists in the case where z1i > τ . In this case the best a neuron can do is to fire
with its maximal firing rate rmax, but can never fully reach its target frequency. This again makes the
case for using weight normalization as in (Diehl et al., 2015), in order to prevent saturation of firing.

Firing rates in higher layers The previous results were based on the assumption that the neuron
receives a constant input z at each step of the simulation. When using spiking neurons in the hidden
neurons, this condition only holds for the first hidden layer and input in the form of analog currents
instead of irregular spike trains. For the reset-by-subtraction case we can analytically derive how
the approximation error propagates through the deeper layers of the network. For this we insert the
expression for SNN input zli from (2) into the membrane equation (4b) for l > 1, average V li (t) over
the simulation time T , and solve for the firing rate rli(T ). This yields

rli(T ) =

M l−1∑
j=1

W l
ijr

l−1
j (T ) + rmaxb

l
i −

V li (T )

τT
. (7)

This result is not surprising, since the firing rate of a neuron in layer l is given by the weighted sum of
the firing rates of the previous layer, minus the time-decaying approximation error that was also found
in the first layer. This shows that the approximation errors of earlier layers are propagated through
the network, and multiplied with the weights of the next higher layer. The recursive expression (7)
can be solved iteratively by inserting the rates of the previous layer rates, starting with the known
rates of the first layer (6):

rli = alirmax −∆V lil −
M l−1∑
il−1=1

W l
ilil−1

∆V l−1
il−1
− · · · −

M l−1∑
il−1=1

W l
ilil−1

· · ·
M1∑
i1=1

W 2
i2i1∆V 1

i1 (8)

with ∆V li := V li (T )/(τT ). Thus, a neuron i in layer l receives an input spike train with a slightly
lower spike rate, reduced according to the sampling error ∆V of previous layer neurons. These errors
accumulate for higher layers, which explains why it takes longer to achieve high correlations of ANN
activations, and why SNN firing rates deteriorate in higher layers.

3 New Methods for ANN-to-SNN Conversion

In the following we introduce new methods and heuristics that improve the classification accuracy
of deep SNNs, by either allowing the conversion of a wider ranger of ANNs, or by reducing
approximation errors in the SNN.

3.1 Converting biases

Biases are standard in ANNs, but were explicitly excluded by previous conversion methods for SNNs.
In a spiking network, a bias can simply be implemented with a constant input current (proportional to
the ANN bias) to each cell’s membrane potential. The theory in Section 2 fully applies to the case
of neurons with biases, and the following Section 3.2 shows how parameter normalization can be
applied to biases as well.

3.2 Parameter normalization

One source of approximation errors is that in an SNN in time-stepped simulation neurons are restricted
to a firing rate range of [0, rmax], whereas ANNs have no such constraints. (Diehl et al., 2015) have
introduced weight normalization as a means to avoid approximation errors due to too low or too
high firing, thereby significantly improving the performance of converted SNNs. Here we extend the
data-based weight normalization mechanism introduced in (Diehl et al., 2015) to the case of neurons
with biases and suggest a heuristic that makes the normalization process more robust to outliers.

4



3.2.1 Normalization with biases

The data-based normalization scheme from (Diehl et al., 2015) is based on the linearity of the ReLU
unit used for ANNs. It can simply be extended to biases by linearly rescaling all weights such that
the ANN activation a is smaller than 1 for all training examples. In order to preserve the information
encoded within a layer, the parameters of a layer need to be scaled jointly. Denoting the maximum
ReLU activation in layer l as λl = max[al], then weights Wl and biases bl are normalized to
W̃l ←Wl λl−1

λl and b̃l ← bl/λl.

3.2.2 Robust mormalization

Although weight normalization avoids saturating firing rates in the SNN, it might result in very
low firing rates, thereby increasing the latency until information reaches the higher layers. In the
algorithm sketched above in Section 3.2.1, which we refer to as "max-norm", the normalization
factor λl by which the weights and biases are scaled was set to the maximum ANN activation among
all samples of the training set. This is a very conservative approach, which ensures that the SNN
firing rates never exceed the maximum firing rate. The drawback is that this procedure is prone to be
influenced by singular outlier samples that lead to very high activations, while for the majority of
the remaining samples, the firing rates will remain considerably below saturation. Such outliers are
not uncommon, as shown in Figure 1a, which plots the distribution of all non-zero activations in the
first convolution layer for 16666 CIFAR10 samples (in log-scale). The maximum observed activation
is more than three times higher than the 99.9th percentile. Figure 1b shows the distribution of the
highest activations across the 16666 samples for all ANN units in the same layer, revealing a large
variance across the dataset, and a peak that is far away from the absolute maximum. This explains
why normalizing by the maximum can potentially perform poorly: For the vast majority of samples
even the maximum activation of units within a layer will lie far below the chosen normalization scale,
and thus there is insufficient firing in the SNN to drive higher layers and obtain accurate results.

As a more robust alternative we propose that instead of choosing the maximum activation, we can set
λ to the p-th percentile of the total activity distribution. This discards extreme outliers, and increases
SNN firing rates for a larger fraction of samples. The potential drawback is that a small percentage of
neurons will saturate, so choosing the normalization scale involves a trade-off between saturation
and insufficient firing. In the following, we refer to the percentile p as the "normalization scale", and
note that the "max-norm" method is recovered as the special case p = 100. Typical values for p that
perform well are in the range [99.0, 99.999]. In general, saturation of a small fraction of neurons
seems to degrade network performance less than having too low spike rates. This method can be
combined with using batch-normalization during ANN training (Ioffe and Szegedy, 2015), which
standardizes the activations in each layer and therefore produces fewer extreme outliers.

0 2 4 6 8 10 12 14 16 18 20
ANN activations

100

101

102

103

104

105

106

107

C
o
u

n
t

99.9%

(a)

0 2 4 6 8 10 12 14 16 18 20
Maximum ANN activations

0

20

40

60

80

100

120

S
a
m

p
le

 c
o
u

n
t

99.9%

(b)

Figure 1: (a) Distribution of all non-zero activations in the first convolution layer of a CNN, for
16666 CIFAR10 samples, in log-scale. The dashed line in both plots indicates the 99.9th percentile of
all ReLU activations across the dataset, corresponding to a normalization scale λ = 6.83. This is
more than three times less than the overall maximum of λmax = 23.16. (b) Distribution of maximum
ReLU activations for the same 16666 CIFAR10 samples. For most samples their maximum activation
is far from λmax.

5



3.3 Conversion of Batch-normalization layers

Batch-normalization (BN) (Ioffe and Szegedy, 2015) reduces internal covariate shift in ANNs and
thereby speeds up the training process. BN introduces additional layers where affine transformations
of inputs are performed in order to achieve zero-mean and unit variance. An input x is transformed
into BN[x] = γ

σ (x − µ) + β, where mean µ, variance σ, and the two learned parameters β and
γ are all obtained during training as described in (Ioffe and Szegedy, 2015). After training, these
transformations can be integrated into the weight vectors, thereby preserving the effect of BN, but
eliminating the computations. Specifically, we set W̃ l

ij =
γl
i

σl
i

W l
ij and b̃li =

γl
i

σl
i

(
bli − µli

)
+ βli . This

makes it simple to convert BN layers into SNNs, because after transforming the weights of the
preceding layer, no additional conversion for BN layers is necessary. Empirically we found loss-less
conversion if BN parameters are integrated into other weights like this, the advantage lies purely in
obtaining better ANNs using BN during training.

3.4 Analog input to first hidden layer

Because truly event-based benchmark datasets are rare (Hu et al., 2016), conventional frame-based
image databases such as MNIST (LeCun et al., 1998) or CIFAR (Krizhevsky and Hinton, 2009) have
been used to evaluate the accuracy of the SNN after conversion. Previous work has usually converted
analog input activations, e.g. gray levels or RGB values into Poisson firing rates. But this introduces
variability into the firing of the network and impairs its performance, without having any notable
benefits. A simple alternative is to use analog input values in the very first hidden layer, and compute
with spikes from there on (Zambrano and Bohte, 2016). Empirically we found this to be particularly
effective in the low-activation regime of ANN units, where usually undersampling in spiking neurons
poses a challenge for successful conversion.

3.5 Spiking softmax

Softmax is commonly used as the output of a deep ANN, because it results in normalized and strictly
positive class likelihoods. Previous approaches for ANN-to-SNN conversion could not convert
softmax layers, but simply predicted the class corresponding to the neuron that spiked most during
the presentation of the stimulus. However, this approach fails when all neurons in the final layer
receive negative inputs, and thus never spike.

Here we convert ANN softmax layers by using a mechanism proposed in (Nessler et al., 2009), where
output spikes are triggered by an external Poisson generator with variable firing rate. The spiking
neurons do not fire on their own but simply accumulate their inputs. When the external generator
determines that a spike should be produced, a softmax competition according to the accumulated
membrane potentials is performed.

3.6 Spiking max-pooling layers

Most successful ANNs use max-pooling to spatially down-sample feature maps, but this has not
been used in SNNs because computing maxima with spiking neurons is non-trivial. Instead, simple
average pooling had been used in (Cao et al., 2015; Diehl et al., 2015), which results in using
weaker ANNs before conversion. Lateral inhibition, as suggested in (Cao et al., 2015), does not
fulfill the job properly, because it only selects the winner, but not the actual maximum firing rate.
Another suggestion by (Orchard et al., 2015) is to use a time-to-first-spike encoding, in which the
first neuron to fire is considered the maximally firing one. Here we propose a simple mechanism for
spiking max-pooling, in which output units contain gating functions, which only let spikes from the
maximally firing neuron pass, while discarding spikes from other neurons. The gating function is
controlled by computing estimates of the pre-synaptic firing rates, e.g. by computing an online or
exponentially weighted average. In practice we found several methods to work well, but demonstrate
only results using exponentially weighted averages of firing rates to control the gating function.

6



4 Results

There are two ways to improve the accuracy of the SNN via conversion: 1) training a better ANN
before conversion, and 2) improving the conversion by eliminating approximation errors of the SNN.
In the following we show the influence of both approaches.

4.1 Contribution of improved ANN architectures

The methods introduced in Section 3 allow conversion of CNNs that use biases, softmax, batch-
normalization, and max-pooling layers, which all improve the accuracy of the ANN. This was
quantified on the CIFAR10 benchmark (Krizhevsky and Hinton, 2009), using a CNN with 4 con-
volution layers (32 3x3 - 32 3x3 - 64 3x3 - 64 3x3), ReLU activations, batch-normalization, 2x2
max-pooling layers after the 2nd and 4th convolutions, followed by 2 fully connected layers (512 and
10 neurons) and a softmax output. This ANN achieved 87.86% accuracy. Constraining the biases to
zero reduced the accuracy to 87.73%. Replacing max-pooling by average-pooling further decreased
the accuracy to 87.69%. Eliminating the softmax and using only ReLUs in the output led to a big
drop to 69.44%. With our new methods we can therefore start the conversion already with much
better ANNs than was previously possible.

4.2 Contribution of improved SNN conversion methods

Figure 2a shows that in the case of CIFAR10 the conversion of the best ANN into an SNN using
the default approach (i.e. no normalization, Poisson spike train input, reset-to-zero) fails, yielding
an accuracy of 16.5%, barely above chance level. Adding weight normalization as suggested in
(Diehl et al., 2015) (red bar) raises the accuracy to 59.82%, but this is still a big drop from the ANN
result of 87.86%. Changing to the reset-by-subtraction mechanism from Section 2 leads to another
20% improvement (orange bar), and switching to analog inputs to the first hidden layer instead of
Poisson spike trains results in an accuracy of 83.6% (green bar). Finally, using the 99.9th percentile
of activations for robust weight normalization yields 87.62% accuracy, which is very close to the
ANN performance and our best result for CIFAR10 with single SNNs. We can therefore conclude that
all the proposed mechanisms for ANN training and ANN-to-SNN conversion contribute positively to
the success of the method. The conversion into a SNN is nearly loss-less, and the results are very
competitive for classification benchmarks using SNNs. These results were confirmed also on MNIST,
where a 7-layer network with max-pooling achieved an accuracy of 99.44%, thereby improving
previous state-of-the-art results for SNNs reported by (Diehl et al., 2015) and (Zambrano and Bohte,
2016).

SNNs are known to exhibit a so-called accuracy-latency-tradeoff (Diehl et al., 2015; Neil et al., 2016),
which means that the accuracy improves the longer the network is being simulated. In Figure 2b
we show that the robust weight normalization factor can be tuned to ideally exploit this property.
Empirically the best results were obtained with normalization factors corresponding to the 99th or
99.9th percentiles of activations. Both lead to accurate classifications quickly, and also converge to
error rates very similar to those of the underlying ANN.

5 Discussion

By allowing a larger class of CNNs to be converted into SNNs, and by introducing a number of novel
improved conversion techniques we could significantly improve the accuracy of our networks on both
CIFAR10 and MNIST. Our best SNN result of 87.82% accuracy on CIFAR10 compares favorably to
previous SNN results: (Cao et al., 2015) achieved 77.43% accuracy on CIFAR10, albeit with a smaller
network and after cropping images to 24x24. With a similarly small network and cropped images,
(Hunsberger and Eliasmith, 2015) achieve 82.95% accuracy. Both conversion methods lose less than
2% due to the conversion, but since their approach does not use weight normalization, the results
shown in Figure 2a suggest that these methods would have problems on larger networks. Better SNN
accuracies to date have only been reported by (Esser et al., 2016), where an accuracy of 89.32% was
reported for a very large network optimized for 8 TrueNorth chips, and making use of ternary weights
and multiple 1x1 network-in-network layers. A smaller network fitting on a single chip is reported
to achieve 83.41%. In our own recent experiments with similar low-precision training schemes for
SNNs we converted the BinaryConnect model by (Courbariaux and Bengio, 2016). Starting from an

7



ANN: 87.86

(a)
(b)

Figure 2: (a) Influence of novel mechanisms for ANN-to-SNN conversion on the SNN accuracy
for CIFAR10. The best ANN from Section 4.1 (87.86%) is converted into an SNN. Default mode
(blue bar): SNN with Poisson inputs, reset-to-zero, and no weight normalization. Red bar: applying
weight normalization as in (Diehl et al., 2015). For the next three bars we apply novel techniques as
presented in Section 3. Shown is the accuracy after 300 time steps. (b) Accuracy-latency-tradeoff:
SNNs give approximate results even when inputs are incomplete, and improve their accuracy with
time. Tested on 400 CIFAR10 samples we find that the accuracy improves rapidly, and approaches
the ANN level. The robust weight normalization factor can be tuned to achieve an ideal tradeoff
between latency and final accuracy.

ANN with 91.94% accuracy, we achieved an accuracy of the SNN of 91.35% on CIFAR10, which is
by far the best SNN result reported to date.

We know from ANNs that larger networks typically perform better than smaller networks, we thus
fully expect to see a boost in SNN accuracy when applying the conversion techniques to even larger
networks. In fact, the best ANNs to date achieve less than 5% error on CIFAR10 (Springenberg et al.,
2014). Our goal here was to expand the toolkit for ANN-to-SNN conversion to the point where such
large networks, using typical CNN mechanisms, can be converted into SNNs with only minimal loss
of accuracy. That the drop-off is typically less than 1% is encouraging. We have also shown that the
typical accuracy-latency tradeoff is still present, although our networks were not specifically trained
to converge fast. Using the techniques proposed by (Neil et al., 2016) should yield accurate results
even faster.

6 Conclusions

Deriving a first solid theory for ANN-to-SNN conversion has directly revealed mechanisms to
improve the classification accuracy of the resulting SNN by a simple switch of reset mechanisms.
This, together with novel tools to convert a large class of CNNs, covering most standard features of
conventional CNNs, has helped achieving state-of-the-art SNN results, and almost loss-less ANN-to-
SNN conversion. Future research will apply the methods to new datasets that require large networks,
such as ImageNet. Another promising line of research is to investigate mechanisms that further
reduce the number of spikes produced, eliminating redundancies when information about static inputs
are sent. We have demonstrated that the accuracy gap between ANNs and SNNs can be almost
completely closed.

Acknowledgments

We thank Jun Haeng Lee for helpful comments and discussions. This work has been supported by the
Samsung Advanced Institute of Technology.

References
Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural networks for energy-efficient object

recognition. International Journal of Computer Vision, 113(1):54–66.

8



Courbariaux, M. and Bengio, Y. (2016). BinaryNet: Training Deep Neural Networks with Weights and
Activations Constrained to +1 or -1. arXiv, page 9.

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-c., and Pfeiffer, M. (2015). Fast-Classifying, High-Accuracy
Spiking Deep Networks Through Weight and Threshold Balancing.

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy, R., Andreopoulos, A., Berg, D. J.,
McKinstry, J. L., Melano, T., Barch, D. R., di Nolfo, C., Datta, P., Amir, A., Taba, B., Flickner, M. D., and
Modha, D. S. (2016). Convolutional networks for fast, energy-efficient neuromorphic computing. Proceedings
of the National Academy of Sciences.

Farabet, C., Paz, R., Pérez-Carrasco, J., Zamarreño, C., Linares-Barranco, A., LeCun, Y., Culurciello, E., Serrano-
Gotarredona, T., and Linares-Barranco, B. (2012). Comparison between frame-constrained fix-pixel-value
and frame-free spiking-dynamic-pixel ConvNets for visual processing. Frontiers in neuroscience, 6:32.

Hu, Y., Liu, H., Pfeiffer, M., and Delbruck, T. (2016). DVS benchmark datasets for object tracking, action
recognition and object recognition. Frontiers in Neuroscience, 10:405.

Hunsberger, E. and Eliasmith, C. (2015). Spiking Deep Networks with LIF Neurons. arXiv:1510.08829 [cs],
pages 1–9.

Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift. arXiv:1502.03167, pages 1–11.

Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny images.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–444.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking neural networks using backpropagation.
Frontiers in Neuromorphic Engineering, 10.

Liu, S.-C., Delbruck, T., Indiveri, G., Whatley, A., and Douglas, R. (2014). Event-Based Neuromorphic Systems.
John Wiley & Sons.

Neil, D. and Liu, S.-c. (2013). Minitaur, an Event-Driven FPGA-Based Spiking Network Accelerator. IEEE
transactions on very large scale integration systems, 22(12):1–8.

Neil, D., Pfeiffer, M., and Liu, S.-C. (2016). Learning to be efficient: algorithms for training low-latency,
low-compute deep spiking neural networks. In Proceedings of the 31st Annual ACM Symposium on Applied
Computing, pages 293–298. ACM.

Nessler, B., Pfeiffer, M., and Maass, W. (2009). STDP enables spiking neurons to detect hidden causes of their
inputs. In Advances in neural information processing systems, pages 1357–1365.

O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. (2013). Real-time classification and sensor
fusion with a spiking deep belief network. Frontiers in Neuroscience, 7:178.

Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N., and Benosman, R. (2015). HFirst: A
temporal approach to object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
37(10):2028–2040.

Perez-Carrasco, J. A., Zhao, B., Serrano, C., Acha, B., Serrano-Gotarredona, T., Chen, S., and Linares-Barranco,
B. (2013). Mapping from frame-driven to frame-free event-driven vision systems by low-rate rate-coding.
application to feed forward convnets. IEEE Trans. on Pattern Analysis and Machine Intelligence, 35(11):2706–
2719.

Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B., and Delbruck, T. (2014). Retinomorphic event-based
vision sensors: bioinspired cameras with spiking output. Proceedings of the IEEE, 102(10):1470–1484.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). Striving for simplicity: The all
convolutional net. arXiv preprint arXiv:1412.6806.

Stromatias, E., Neil, D., Galluppi, F., Pfeiffer, M., Liu, S.-C., and Furber, S. (2015). Scalable energy-efficient,
low-latency implementations of trained spiking deep belief networks on spinnaker. In International Joint
Conference on Neural Networks (IJCNN), pages 1–8.

Zambrano, D. and Bohte, S. M. (2016). Fast and efficient asynchronous neural computation with adapting
spiking neural networks. arXiv preprint arXiv:1609.02053.

9


	1 Introduction
	2 Theory of Conversion of ANNs into SNNs
	3 New Methods for ANN-to-SNN Conversion
	3.1 Converting biases
	3.2 Parameter normalization
	3.2.1 Normalization with biases
	3.2.2 Robust mormalization

	3.3 Conversion of Batch-normalization layers
	3.4 Analog input to first hidden layer
	3.5 Spiking softmax
	3.6 Spiking max-pooling layers

	4 Results
	4.1 Contribution of improved ANN architectures
	4.2 Contribution of improved SNN conversion methods

	5 Discussion
	6 Conclusions

