IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 3, MAY 2007

Gabor-Like Image Filtering Using a Neural Microcircuit

C. Mayr, A. Heittmann, and R. Schiiffny

Abstract—In this letter, we present an implementation of a neural mi-
crocircuit for image processing employing Hebbian-adaptive learning. The
neuronal circuit utilizes only excitatory synapses to correlate action poten-
tials, extracting the uncorrelated ones, which contain significant image in-
formation. This circuit is capable of approximating Gabor-like image fil-
tering and other image processing functions.

Index Terms—Neural image processing, neural microcircuit application,
pulse computation application, pulsed Gabor convolution.

I. INTRODUCTION

Gabor wavelet decomposition has long been established as an ef-
ficient way of image compression and analysis. Experimental biolog-
ical evidence also points to nature’s use of very similar convolution
masks [1]. Technical implementations of neural circuits aim to copy
some of the image segmentation/analysis/decomposition properties ex-
hibited by mammalian visual pathways. Very large scale integration
(VLSI)-based spiking neurons so far have mainly exploited the syn-
chronization patterns of locally coupled spiking neurons using var-
ious synapse adaptation rules [2], [3]. However, this type of network
pattern is relegated to simple image analysis. More complicated neu-
rons and synapses as well as more complex network topologies are
needed to achieve high-level, nontrivial image processing functions
[4]. In Section II, a neural microcircuit capable of extracting the un-
correlated pulses from two pulse streams [5] and its modification for a
hardware implementation are briefly described. Its application to image
filtering tasks up to the complexity of Gabor masks and the relevant
processing cascade is given in Section III. Also, several simulation
results are presented, underlining the efficacy of the proposed pulsed
image processing for fast, low resolution, as well as slow, high-resolu-
tion image analysis functions.

II. MICROCIRCUIT

A. Neural Circuit and Adaptation Rules

Recurrent, stereotyped neural microcircuits occurring in biological
neural networks have been described in [5]. One important aspect of
these microcircuits is their individual simplicity, contrasting with the
complex processing functions a network of these circuits is capable of.
The ones analyzed in [6] are using excitatory and inhibitory synapses,
but purely inhibitory microcircuits have also been found in mammals
[7]. In [6] and [8], it is postulated that extracting correlations between
inputs is one of the major processing functions, with [8] presuming that
inhibitory synapses are necessary to achieve the synchronous activity
among neurons required for correlation detection [2], [4]. This is in

Manuscript received August 30, 2005; revised March 27, 2006; accepted
November 25, 2006. This work was supported in part by the German Federal
Ministry of Research (BMBF) under Project “Vision IC” and in part by the
Information Society Technologies Program, Biologically Inspired Information
Systems Branch of the European Union under Project FACETS 15879.

C. Mayr and R. Schiiffny are with the Circuits and Systems Labora-
tory, Department of Electrical Engineering, Dresden University of Tech-
nology, Dresden 01062, Germany (e-mail: mayr@iee.et.tu-dresden.de;
schueffn @iee.ct.tu-dresden.de).

A. Heittmann is with the Infineon Technologies AG, Corporate Research, Mu-
nich 81730, Germany (e-mail: arne.heittmann@qimonda.com).

Digital Object Identifier 10.1109/TNN.2007.891687

955

adaptive, membrane
u=12 ms2
v=0.1 ms -1

adaptive, membrane
u=-12 ms=2

y=0.1 ms -
adaptive, dendrite
u=-500 ms=2

y=1.6 ms -
W,_=0.025

W,;, W,,=0.025 constant

Fig. 1. Neural microcircuit.

contrast with the work reported in [2], [3], and [5], where purely excita-
tory synapses also achieve synchronous neuronal activity for correlated
inputs. So, while neural microcircuits consisting solely of excitatory
synapses have not yet been found, there are no theoretical obstacles to
their implementation. Additionally, excitatory synapses arranged in a
feedforward manner as contained in the microcircuit described herein
make for rapid information processing [9]. To explore the complex pro-
cessing possible through networks of microcircuits, and to take advan-
tage of feedforward excitatory neural structures, the following micro-
circuit (introduced in [5]) has been implemented.

The neural microcircuit consists of simple nonleaky inte-
grate-and-fire (IAF) neurons connected by two types of adaptive
synapses (Fig. 1). The dynamics of the IAF neurons are given by
multiplying the pulses running along the synapses with the respective
synapse weights and integrating them on the neuron membrane. Once
the membrane potential reaches a firing threshold # of one, the neuron
emits an output pulse, immediately resets the integrator, and is open
for new inputs (no refractoriness period, i.e., temporal blocking of the
membrane integrator).

The adaptation rule of the first two synapses (W31 and Ws2), here
called a membrane adaptation, is given as follows (indices are shown
for the synapse connecting neurons 1 and 3, expressed by W31):

%‘4’731 = —7- Ws1 + jis <(L3 — g) . X(_X1). (1)

It is a basic Hebbian learning rule intended to synchronize pulses
with almost constant phase relationships [3], with v as decay term,
pas learning rate, a3 denoting the membrane accumulator state, 6 the
positive/negative learning threshold, and y being the indicator function
of neuron 1 output X1, one if neuron 1 exhibits a pulse, zero otherwise.
The decay term “forgets” the learned weight if it is not reinforced by
the pulse activity, while the second term acts as a correlator between the
accumulator state of neuron 3 and the pulses exhibited by neuron 1. The
accumulator of neuron 3 has to be high (i.e., close to its firing threshold)
when neuron 1 fires, for the weight W31 to increase, which reflects the
Hebbian aim of increasing a synaptic weight if the presynaptic neuron
takes part in firing the postsynaptic one.

In this particular application, (1) is employed to extract correlated
pulses from the output pulse streams of neurons 1 and 2. To illustrate
the correlation function of neurons 1-3 governed by (1), let us assume
neuron 3 has just emitted a pulse and has a membrane potential a3
close to zero. If neuron 2 emits a pulse next, the corresponding weight
Wi is increased (@ < 0 and a5 — 6/2 < 0) and a3 pushed above
#/2. If neuron 1 emits a pulse next, its corresponding weight is also
increased (1 > 0 and as — #/2 > 0) and neuron 3 is pushed above the
firing threshold. Only this particular phase relationship (i.e., a pulse of
neuron 2 followed by a pulse of neuron 1) results in neuron 3 emitting

1045-9227/$25.00 © 2007 IEEE

956

Pulse rate
(normalized)
1.0 1.0
Neuron 2
Cij , Dij /W } \
0.75 5\ {E
= & | Neuron 1
r\hmmm

0.25/ \M{im Mk\w

.5

Njuron 4

iz

0.0 0.0

1 0 0.5

iy 1

Fig. 2. Results of neural microcircuit, normalized correlation, and decorrela-
tion between neurons 1 and 3, as well as the corresponding input pulse rates for
neurons 1 and 2 and output neuron 4.

pulses, thus neuron 3 emits only pulses correlated between neurons 1
and 2. This adaptation rule, when applied to image processing, acts as
an inverted first-order difference operator, i.e., the output activity of
neuron 3 decreases with the steepness of the gradient between neurons
1 and 2, an effect which is used in [10] for a somewhat similar, pulse-
timing-based rule to detect edges and establish image depth from pulse
correlations.

The second adaptation rule acting on synapse Wi, the dendrite
adaptation, is given as

d ., . .
ELT/41 = —7- (Wy1 — W;o)

- (X3 - Wiz + Xo - Wae —Ip) - Way - x(X1) Q)
which works in such a way that, with no pulses present, the first term
draws W4 asymptotically to W, letting pulses from neuron 1 pass to
neuron 4. If, however, the second term is added through a pulse event
x(X71), with the threshold current Iy equal to 0.02, i.e., less than X5 -
Wias or Xo - Wy, the weight Wy, is decreased. This means that if a
pulse is detected further up the dendritic tree (W43 or Was2), this pulse
blocks any that would be transmitted by W, to neuron 4. Compared
to the membrane adaptation, the dendritic adaptation acts very fast,
as is evident by the different adaptation parameters p given in Fig. 1.
This type of adaptation operates on single pulses, producing a quasi-
digital gating function [4, Sec. 19.3.2]. Wa2 is entered into the circuit
to precharge the dendritic adaptation, also mitigating the delay inherent
in propagating the correlated pulse across neuron 3.

Further, we define the correlation between the pulses of neurons 1
and 3 as follows:

1 oo ,
Ci= gt [AR At O

With the normalized correlation given as Ci3 = C13/C\1, and the
normalized decorrelation defined as D13 = 1 — Ci3, the net effect
of theses rules and synapses is given in Fig. 2, i.e., if there are uncor-
related pulses from neuron 1, these are transmitted across the neural
microcircuit; uncorrelated (super numerous) pulses from neuron 2 are
ignored. The microcircuit acts as a pulse subtractor, restricted to the
positive domain, i.e., once neuron 2 exhibits more activity than neuron
1, the output neuron 4 simply stays at its lowest activity level. For a
more detailed discussion of the neural microcircuit, please see [5].

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 3, MAY 2007

Weight

Pixel cell Neural
_»| Synapse < microcircuit
S<
Outputs |~
—_— [0}
—»| Confi =S gL
-3 § 3>
- c 2
- > £
r .

:

Digital
Neuron
Function

Digital neuron
—

Fig. 3. Schematic of NPU.

B. Digital Implementation and Input Circuitry

One of the adaptation rules, the membrane adaptation, has been im-
plemented in analog hardware for a different application, exhibiting its
veracity compared to the simulation [3]. However, for the integrated
circuit (IC) implementation of the microcircuit, due to size and time
constraints, a pulsed pseudodigital representation of the microcircuit
has been carried out, exhibiting the same behavior. This microcircuit is
part of a neural processing unit (NPU, Fig. 3), with additional functions
for pulse weighting and a digitally realized neuron, both carried out
by the same digital accumulator, which either transmits the weighted
signal (synapse function) or a single pulse if the accumulator reaches a
certain threshold (neuron function).

The weighting can be governed by external configuration signals,
i.e., further adaptation rules carried out in digital computation in
an external field-programmable gate array (FPGA). Also, a simple
pulsing pixel cell is part of the NPU, consisting of a complementary
metal-oxide—semiconductor (CMOS) photosensor, accumulator, and
thresholded pulse generator [11]. This pixel cell provides the pulsed
input for the neural processing elements, i.e., the neural microcircuit
and the weighting/digital neuron. The pulse frequency of the pixel
cell output is linearly dependent on the photo current produced by the
CMOS photo sensor.

III. IMAGE FILTERING

A. Pulsed Edge Detector

A group of the neural microcircuits can be used to construct a
simple edge detector by connecting their inputs to adjacent pixels,
stacking them according to Fig. 4(a), feeding their respective input
neurons 1 (4) and 2 (—) with pulsed representations of the grayscale
image and summing their outputs. These pulsed grayscale images
are obtained by supplying an analog hardware description language
(AHDL) representation of the pulsing pixel cell [11] with input
current linearly based on pixel brightness (grayscale value). Fig. 4(b)
shows the output of the edge detector if an edge moving from
left to right is presented to it.

The topological linking of the pixel cells to the microcircuits and
(in case of higher level processing) the linking of microcircuits among
themselves is carried out via an address—event representation (AER)
of their respective output pulses, with pulses distributed across the mi-
crocircuits (to single or multiple destinations) in a packet-based way,
similar to the AER described in [12].

As can be seen, the pulse response rises when the edge enters the
neighborhood of the detector, with a defined maximum (the “mea-
sured” curve, which denotes a pulsed simulation as described later).
The ideal curve is obtained by feeding the same moving edge to a con-
tinuous representation of the microcircuit, and computing the resultant

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 3, MAY 2007

a) b) 120

957

120

-© measured

100 |

-© measured

- ideal

pulse rate (pulses/s)

0 5 10 15 20 25 30
displacement (pixel)

Fig. 4. Edge detector and translatory response dependent on the location
of the presented edge (physical location of edge detector corresponds to
ten pixels displacement).

pulse counts. The slopes are due to the exact modeling of the pixel cell,
which includes metal stack effects of modern CMOS technologies. This
means that as the photo diode is contained in the substrate, i.e., at the
bottom of the IC, the light reaching it will not only be the light entering
directly, but also indirect light reflected off the metal layers at the edges
of the pit the diode is contained in. For practical purposes, this can be
thought of as a Gaussian smoothing with a o of about 1.4 pixels, re-
sulting in slopes in the response curve, rather than a sharp transition as
the edge in the input image enters the edge detector. The discrepancy
between ideal and pulsed, i.e., “measured,” curve is also due to this
random light scattering effect, which, especially at very high and low
current levels, leads to noise on the photo current and thus to jittering
of the pulse times. This upsets the pulse order required for correct op-
eration of the microcircuit as expressed by (1) and (2), thereby leading
to false pulse responses for low brightness contrast (at the border of the
edge) and pulses lost for high brightness contrast, as compared to the
ideal curve.

A note on the method by which these results were obtained
is as follows: an implementation of the microcircuit-IC has been
carried out in a 130-nm CMOS technology to tape-out level, but
cancelled due to funding constraints. The results presented herein
are based on system-level Mentor ModelSim simulations of a very
high-speed integrated circuit (VHSIC) hardware description language
(VHDL)/AHDL code of the IC. Major components of the IC, however,
have been implemented and verified previously, like the AER employed
for pulse communication [3], or the pulsing pixel cell and the adapting
synapses as aforementioned. Where applicable, the VHDL/AHDL
code has been augmented by measurement results to enhance its
veracity.

The effectiveness of this edge detector can be enhanced by feeding
both the summed outputs of a positive (analog to Fig. 4) and nega-
tive edge detector to one of the neural microcircuits (Fig. 5), which
pools them. Both edge detectors are located at the same spatial coordi-
nates, i.e., on top of each other, having access to the same pixel pulse
trains; the separation between both in Fig. 5 only denotes the processing
scheme. This way, the negative edge detector will respond to the occa-
sions when the pulse order is jittered for the positive one, as explained
previously. The “pooling” microcircuit then subtracts the adjustment
signal provided by the negative edge detector from the original answer
of the positive edge detector, resulting in a better translatory precision,
because the jittered false pulse responses cancel each other. However,
this method also reduces the maximum response, where pulses are al-
ready lost due to jittering, and still more of them are subtracted.

+[+[+][+]+
11
1T

+[+[+[+][+

— — -a- ideal
= = 2 g0
[
' 2
=
! G
1 1 8
1 I s
\ g 40
1 I =
1 ! Q,
1 1
' 1 20 |

0 5 10 15 20 25 30
displacement (pixel)

Fig. 5. Positive and negative edge detector and resulting improved translatory
response.

B. Pulsed Processing Pyramid for Gabor Filtering

By setting up a processing pyramid, i.e., several ordered processing
steps, of these microcircuits and introducing pathways to the neurons
in the extended neighborhood, more complex image filtering functions
can be accomplished; in particular, Gabor wavelet decomposition of the
image can be realized as a pulsed image computation. This is some-
what similar to the image processing described in [13], where select
synapses, each connected to a single pixel realizing a retina function,
are linked together to produce receptive fields in differing orientations.
The discussed implementation differs in three aspects from [13]. First,
the receptive fields are not fixed in hardware; they can be arbitrarily
chosen with the configurable AER as discussed previously. Second,
both the input pixel cells and the microcircuits are realized on the same
IC, so the receptive fields can be built on this single IC. Third, the com-
munication between pixels and higher level processing is pulse-based,
quasi-digital, not analog.

In the case of Gabor filtering, the one-sidedness of the pulse sub-
traction becomes a more serious issue, so that using opposing masks
at the same spatial coordinates is not simply advisable for improving
noise errors, as in the edge detectors, but rather to counter an inherent,
systematic flaw of this method of image convolution. Consider, for ex-
ample, a 1-D convolution with mask (1 —2 1), which could be a slice
through a simple even Gabor filter [1] or which could be added in the
form(1 =2100)+(001 —=21)=(1 -2 2 =2 1) to produce
more complex Gabor filters. This mask can be realized with a pair of
NPUs in the form (+ — +), where both negative inputs (—) access the
same pixel. If an input pattern of (3 2 1), respectively its pulsed repre-
sentation, were presented to the ideal mask, the response would be, of
course, 0. Using the neural microcircuits, however, the first NPU will
deliver 3 — 2 = 1, whereas the result for the second NPUis1 -2 = 0,
because of the one-sidedness of its subtraction (Fig. 2), so the summed
response of the NPU mask will be 1. If we introduce a second, negative
mask (— ++ —), itsresult will be 1 as well, so we get the correct result
of 0 by subtracting the result for the negative mask (— + + —) from
the positive mask response. This procedure will not alter the response
for a perfect fit to the positive mask, since the negative mask responds
with O in such a case. This correction is not perfect, an input pattern of
(2 2 1) will result in —1 for the ideal mask, whereas even the corrected
signal (pos-neg) for the NPUs is 0. The method described previously
for setting up a 1-D filter using the microcircuits can, of course, be ex-
tended to the 2-D case.

Since Gabor amplitude response is of most use in image analysis,
the next step will be computing the absolute value Gabor response Ras

958

Wegative
Mask

20 40 60 80 100 120

Fig. 6. VHDL simulation of pulsed Gabor convolution on the IC, with the axes/
numbers indicating pixel/NPU location.

from the positive and negative Gabor mask responses 12+ and I2_. This
absolute value is, of course, defined as

Ry —-R_,
R_— R+7

for Ry > R_

for Ry < R_"~ @)

#e— A= {

If we input R+ and R— once in every direction to a neural microcir-

cuit and sum the results, the one-sided subtraction results in the same

computation, which incidentally also corrects the positive and negative

mask responses by subtraction of the opposing mask, as described pre-
viously

Ry — R_+0,
0+ R_ — Ry,

forRy > R_

forRy < R_~ ®)

(Re—R_)+(R_—Ry) ={

In Fig. 6, the actual implementation of the processing pyramid is
depicted, realized on the neural processing IC consisting of 128 * 128
NPUs. The figure shows a grayscale representation of a pulse histogram
of the NPU output pulses across the IC. A pulse histogram, i.e., a lo-
cation-specific accumulation of pulses is a convenient way to represent
the processing carried out in the various microcircuits, similar to the re-
sistance—capacitance (RC)-reconstruction of an AER code as outlined
in [12]. Sections of the NPU matrix and their attendant pulse routing
have been configured to perform the processing steps described previ-
ously. These processing steps consist of (clockwise from top left) the
pulsed image input, generation of the image convolution response to
the regular submasks of the Gabor mask (top right, submask principles
as mentioned previously), summation of those submask answers in the
positive and negative Gabor mask (bottom left), subtraction of positive
and negative mask in both directions [bottom right; see also (5)], and
summation of these revised positive and negative masks into the final
Gabor convolution answer (middle left, below original image).

C. Examples for Pulsed Gabor Filtering

To show the accuracy of this pulsed convolution method as compared
to conventional image convolution, Fig. 7 gives a comparison between
original image, amplitude of the Gabor response for conventional con-
volution, and the pulsed Gabor answer.

The pulsed computation of the Gabor mask exhibits two distinct ad-
vantages compared to a conventional image convolution, namely ro-
bustness to temporal noise [compare Fig. 8(b); this convolution re-
sponse has been computed with a 20% white noise level on the pixel
currents, but shows little difference to the result from Fig. 7(c), due

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 3, MAY 2007

b) c)

Fig. 7. (a) Comparison of original image. (b) Amplitude response of an ideal
Gabor image filter. (c) Pulsed realization using the neural microcircuit.

a) b)
Fig. 8. Results for computing pulsed Gabor filter answers (a) with very little
input pulses and (b) with input pulses corrupted by noise.

to the noise cancellation carried out via positive and negative masks].
Also, the pulsed computation inherently operates at different levels of
resolution. As can be seen from the picture shown in Fig. 8(a) (taken
after the brightest pixel in the original image had emitted three pulses),
the most distinctive features evident in the full Gabor response are also
evident in this early response, while the more detailed Gabor features
do not show yet. This pulsed computation makes for rapid, low reso-
lution, and slow, high resolution image processing, which is analogous
to biological neural nets [9], [6].

IV. CONCLUSION

We have presented a pulse-processing neural microcircuit as part of
a neural processing IC. The neural microcircuit is based on two in-
formation processing principles postulated from biological evidence,
Hebbian pulse correlation [4, Sec. 13.5.1] and dendritic pulse gating
[4, Sec. 19.3.2]. While performing a simple pulse correlation/decor-
relation individually, suitably shaped networks of these microcircuits
are capable of realizing complex image filtering tasks such as Gabor
wavelet decomposition as pulse-based computation. These networks
employ some of the principles postulated from biological evidence,
e.g., the building of complex masks through several simpler interim
steps in a layered configuration, and the use of directly opposing masks
at the same image location (similar to ON/OFF centers [1], [8], [9]) to
cover the whole spectrum of convolution mask responses to a given
image. While making no claim as to the veracity of the chosen approach
with respect to the mammalian visual pathways, the developed Gabor
operator exhibits some of the characteristics of said pathways, namely
robustness, parallelism, and fast, low resolution, as well as slow, high
resolution image convolution.

REFERENCES

[1] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional ar-
chitecture of monkey striate cortex,” J. Neurophysiol., vol. 195, pp.
215-243, 1968.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 3, MAY 2007

[2] Y. Ota and B. M. Wilamowski, “CMOS architecture of synchronous

pulse-coupled neural network and its application to image processing,”

in Proc. 26th Ann. Conf. IEEE Ind. Electron. Soc. (IECON), Nagoya,

Japan, Oct. 2000, pp. 1213-1218.

D. Matolin, J. Schreiter, and R. Schiiffny, “Implementierung eines

neuronalen Netzwerkes zur Bildsegmentierung als Beispiel fiir die

Realisierung von hochparallelen und fehlertoleranten Signalverar-

beitungssystemen mittels analoger integrierter Schaltungen,” in Proc.

Dresdner Arbeitstagung Schaltungs- und Systementwurf (DASS),

Dresden, Apr. 2005, pp. 7-14.

[4] C. Koch, Biophysics of Computation—Information Processing in
Single Neurons. Oxford, U.K.: Oxford Univ. Press, 1999.

[5] A. Heittmann and U. Ramacher, “An architecture for feature detection
utilizing dynamic synapses,” in Proc. 47th IEEE Int. Midwest Symp.
Circuits Syst., Jul. 2004, pp. 1I-373-11-376.

[6] W. Maass, T. Natschldger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural Comput., vol. 14, no. 11, pp. 2531-2560,
2002.

[7]1 C.Moore, C. Wilson, C. Mayer, S. Acquah, V. Massari, and M. Haxhiu,
“A GABAergic inhibitory microcircuit controlling cholinergic outflow
to the airways,” J. Appl. Physiol., vol. 96, pp. 260-270, 2004.

[8] R. Eckhorn, “Neural mechanisms of scene segmentation: Recordings
from the visual cortex suggest basic circuits for linking field models,”
IEEE Trans. Neural Netw., vol. 10, no. 3, pp. 464—479, May 1999.

[9] R. V. Rullen and S. J. Thorpe, “Rate coding versus temporal order
coding: What the retinal ganglion cells tell the visual cortex,” Neural
Comput., vol. 13, pp. 1255-1283, 2001.

[10] Z. Yang, A. F. Murray, F. Worgotter, K. L. Cameron, and V. Boon-
sobhak, “A neuromorphic depth-from-motion vision model with STDP
adaptation,” IEEE Trans. Neural Netw., vol. 17, no. 2, pp. 482-495,
Mar. 2006.

[11] C.Mayr and R. Schiiffny, “Image pulse coding scheme applied to fea-
ture extraction,” in Proc. Image Vis. Comput., Dunedin, New Zealand,
Nov. 2005, pp. 49-54.

[12] A. Linares-Barranco, G. Jimenez-Moreno, B. Linares-Barranco, and
A. Civit-Balcells, “On algorithmic rate-coded AER generation,” IEEE
Trans. Neural Netw., vol. 17, no. 3, pp. 771-788, May 2006.

[13] K. Shimonomura and T. Yagil, “A multichip aVLSI system emulating
orientation selectivity of primary visual cortical cells,” IEEE Trans.
Neural Netw., vol. 16, no. 4, pp. 972-979, Jul. 2005.

3

—

Comparing Support Vector Machines and Feedforward
Neural Networks With Similar Hidden-Layer Weights

Enrique Romero and Daniel Toppo

Abstract—Support vector machines (SVMs) usually need a large number
of support vectors to form their output. Recently, several models have been
proposed to build SVMs with a small number of basis functions, main-
taining the property that their hidden-layer weights are a subset of the data
(the support vectors). This property is also present in some algorithms for
feedforward neural networks (FNNs) that construct the network sequen-
tially, leading to sparse models where the number of hidden units can be
explicitly controlled. An experimental study on several benchmark data
sets, comparing SVMs and the aforementioned sequential FNNs, was car-
ried out. The experiments were performed in the same conditions for all

Manuscript received May 5, 2006; revised October 26, 2006 and December
27,2006; accepted January 5, 2007. This work was supported by the Consejo In-
terministerial de Ciencia y Tecnologia under Projects CGL2004-04702-C02-02
and TIN2006-08114.

E. Romero is with the Departament de Llenguatges i Sistemes Infor-
matics, Universitat Politécnica de Catalunya, Barcelona 08034, Spain (e-mail:
eromero@lsi.upc.edu).

D. Toppo is with the I&C School of Computer and Communication Sciences,
Swiss Federal Institute of Technology (EPFL), Lausanne 1015, Switzerland.

Digital Object Identifier 10.1109/TNN.2007.891656

959

the models, and they can be seen as a comparison of SVMs and FNNs when
both models are restricted to use similar hidden-layer weights. Accuracies
were found to be very similar. Regarding the number of support vectors,
sequential FNNs constructed models with less hidden units than standard
SVMs and in the same range as ““sparse” SVMs. Computational times were
lower for SVMs.

Index Terms—Feedforward neural networks (FNNs), sparse models, sup-
port vector machines (SVMs).

I. INTRODUCTION

Support vector machines (SVMs) and feedforward neural networks
(FNNs) are two alternative machine learning approaches for classifi-
cation and regression problems with different inductive bias and very
interesting properties (see, for example, [1] and [12]). Although both
models have been developed from different backgrounds, they share a
number of elements that allow to establish a direct correspondence be-
tween them. In fact, from a formal point of view, they are structurally
similar, since both SVMs and FNNs induce an output function which
is expressed as a linear combination of simple (basis) functions

N
fz) = b—|—z/\kh(wk,w).)
k=1

For SVMs, N is the number of support vectors, % is the kernel func-
tion, {wy }2_, are the support vectors, and { A }2_, are the coefficients
found by the constrained optimization problem posed. For FNNs (fully
connected with one hidden layer of units and linear output units), /N
is the number of units in the hidden layer, % is the activation function,
{wi}i_, are the hidden-layer weights, and {\z}i_, are the output-
layer weights. The bias term b is common for both SVMs and FNNs.

The differences between the solutions obtained by both models lie in
the way the elements of that linear combination (1) are found. This is a
consequence of their respective inductive bias. The first important dif-
ference is related to the number of elements in the combination (number
of support vectors for SVMs and number of hidden units for FNNs).
Whereas for SVMs the number of support vectors is usually a result of
the optimization problem posed, for FNNs the number of hidden units
is usually fixed a priori. A second difference lies in the hidden-layer
weights {wk}ﬁ: 1. For SVMs, they are always a subset of the data (the
support vectors), as a consequence of the optimization problem solved.
For FNNgs, in contrast, that property does not usually hold. Finally, the
values of the output-layer weights {\; }#—; may be very different for
the same training set, since different optimization problems are solved
(the maximization of the margin for SVMs and the minimization of the
sum-of-squares error for FNNs).

There exist, however, FNN models [4], [13], [9] that do not show all
of these differences with respect to SVMs. In these models, the network
is constructed sequentially, so that the number of hidden units is a result
of the learning process rather than fixed a priori (for areview of sequen-
tial FNNs see, for example, [6]). In addition, hidden-layer weights are
always a subset of the data, as usual for SVMs. These properties lead to
sparse solutions where the number of elements in (1) can be explicitly
controlled.

In practice, models with good performance and few basis functions
are desired. One of the problems affecting SVMs is that a large set of
support vectors is usually needed to form their output function, making
it complex and computationally expensive for real-time applications.
Recently, several alternative methods to build SVMs with a small
number of basis functions have been proposed. Among them, the
v-SVM [10] and the “sparse” SVMs described in [5] maintain the

1045-9227/$25.00 © 2007 IEEE

