This article cites 66 articles, 32 of which you can access free at:
http://jn.physiology.org/cgi/content/full/100/4/1909#BIBL

This article has been cited by 1 other HighWire hosted article:

Glutamatergic Nonpyramidal Neurons From Neocortical Layer VI and Their Comparison With Pyramidal and Spiny Stellate Neurons
[Abstract] [Full Text] [PDF]

Updated information and services including high-resolution figures, can be found at:
http://jn.physiology.org/cgi/content/full/100/4/1909

Additional material and information about Journal of Neurophysiology can be found at:
http://www.the-aps.org/publications/jn

This information is current as of May 31, 2010.
Inter- and Intralaminar Subcircuits of Excitatory and Inhibitory Neurons in Layer 6a of the Rat Barrel Cortex

Pratap Kumar1 and Ora Ohana1,2

1Institute of Neuroinformatics, University/ETH Zurich, Zurich, Switzerland; and 2Department of Molecular Neurobiology, Freie Universität Berlin, Berlin, Germany

Submitted 16 June 2008; accepted in final form 21 July 2008

Approximately half the excitatory neurons in layer 6 (L6) of the rat barrel cortex project to the thalamus with axon collaterals ramifying in the granular L4; the remaining project within cortex with collaterals restricted to infragranular laminae. In analogy, L6 inhibitory neurons also include locally arborizing and inter-laminar projecting neurons. We examined whether L6 neurons participating in different laminar interactions were also morphologically and electrically distinct. Corticothalamic (CT) neurons were labeled by in vivo injections of a retrogradely transported fluorescent tracer into the primary thalamic nucleus. Whole cell current-clamp recordings were performed from labeled and unlabeled L6 neurons in brain slices of juvenile rats; the morphology of cells was subsequently recovered and reconstructed. Corticocortical (CC) neurons were distinguished from CT cells based on the absence of a subcortical projection and the predominantly infragranular arborization of their axon collaterals. Two morphological CC subtypes could be further distinguished based on the structure of their apical dendrite. Electrically, CT neurons had shorter membrane time-constants and action potential (AP) durations and higher rheobase currents. CC neurons fired high-frequency spike doublets or triplets on sustained depolarization; the burst frequency also distinguished the two morphological CC subtypes. Among inhibitory L6 cells, the L4-projecting (L6iL4) and local (L6iL6) inhibitory neurons also had contrasting firing properties; L6iL4 neurons had broader APs and lower maximal firing rates. We propose that L6 excitatory and inhibitory neurons projecting to L4 constitute specialized subcircuits distinct from the infragranular network in their connectivity and firing patterns.

INTRODUCTION

The appeal of cortical lamina 6 (L6) in the study of sensory information processing arises from its huge potential influence on the responses of both thalamic relay neurons (Gilbert and Kelly 1975; Rouiller and Welker 2000; Wise and Jones 1977) and cortical L4 cells that receive the relay (Ahmed et al. 1994; Fitzpatrick et al. 1985; Gilbert and Wiesel 1979; Zhang and Deschênes 1997). In the rodent somatosensory cortex, this layer is both the widest (Hutsler et al. 2005; Skoglund et al. 1996) and contains the most number of neurons (Ren et al. 1992); it is the infamous heterogeneity in its cell types that makes L6, however, hard to study and its role difficult to understand (Ferrrer et al. 1986; Tömböl 1984).

In the rat barrel cortex, the upper portion of this layer (L6a) consists of two main types of excitatory neurons, the corticothalamic (CT) and corticocortical (CC) (Zhang and Deschênes 1997). CT neurons have large terminal arbors in the thalamus and L4, a feature common to other species and cortical areas (Katz 1987; Lund 1988; Prieto and Winer 1999; Usrey and Fitzpatrick 1996); the L4 projection in the primary visual cortex of cats has been estimated to provide about half of all excitatory synapses in that lamina (Ahmed et al. 1994). CC neurons, on the other hand, have extensive intracortical projections but no subcortical target. Inhibitory cells in this lamina can also be divided into two major groups based on their axonal projections, one with inter-laminar axonal projections to granular and supragranular layers and the other with axons restricted to infragranular laminae (Ma et al. 2006; Markram et al. 2004; Tömböl 1984; Wang et al. 2004). Similar interlaminar inhibitory projections have been described arising from infragranular visual cortices of cats and monkeys (Kisvárday et al. 1987; Lund et al. 1988).

L6 could therefore comprise distinct excitatory and inhibitory circuits broadly divisible into those interacting with L4 and those not. It is yet unclear if neurons involved in different subcircuits are also electrically distinct. Recent studies in other cortical regions and laminae have linked specific laminar interconnections with unique biophysical and synaptic properties (Kampa et al. 2006; Morishima and Kawaguchi 2006; Yoshimura et al. 2005); it is proposed that such interactions delineate subcircuits with specialized functions. Cells in L6 with their clearly different inter- and intralaminar projections provide the opportunity to further test this hypothesis.

Attempts to study biophysical differences between excitatory L6 neurons have been few, and the ambiguity in the morphological identity of neurons in these studies leaves the question unanswered (Brumberg et al. 2003; Mercer et al. 2005; van Brederode and Snyder 1992). Biophysical differences between locally arborizing and interlaminar projecting inhibitory neurons in L6 have not yet been investigated. This study asks specifically if the intra- and interlaminar subcircuits in L6 are also associated with unique physiological properties.

METHODS

Experiments were carried out in 37 Wistar rats of both sexes. Briefly, the animals were injected at postnatal day 13–15 with a fluorescent neuronal tracer placed in the ventral posterior medial nucleus (VPm) of the thalamus. Brain slices were obtained from the animals 4–7 days later. Retrogradely labeled corticothalamic neurons and neighboring unlabeled neurons in L6 were targeted for whole cell patch-clamp recordings. All cells were filled with biocytin and their morphology was subsequently recovered and reconstructed. Whole cell clamp recordings were performed from labeled and unlabeled L6 neurons in brain slices of juvenile rats; the morphology of cells was subsequently recovered and reconstructed.
morphology later recovered and, in some cases, reconstructed. All experiments were carried out under regulations of the Cantonal Veterinary Authority of Zurich.

Thalamic injections

Four or five pups per litter were separated from the dam of which two or three pups were operated on. Animals were anesthetized with a 9:1 mixture of ketamine (63 mg/kg; Narketan, Chassot, Switzerland) and Xylazine (7 mg/kg; Rompun, Bayer Leverkusen, Germany) injected intraperitoneally. The depth of anesthesia was monitored by checking the withdrawal reflex. Animals were placed in a stereotactic apparatus and their body temperature maintained at 37°C. A fluorescently tagged neuronal tracer, tetramethylrhodamine dextran (TMRDextran, 3000 MW, Invitrogen Switzerland), was injected into the thalamus at the following coordinates: 3.1 mm posterior and 2.8 mm lateral to Bregma at a depth of 5.3 mm from the dura. Coordinates were modified from Kaneko et al. (1996) to accommodate for the smaller brain size of the young animals used in this study. About 0.2 µl of a 0.1 M solution of TMR-dextran in a citrate buffer (pH 3.0) was slowly pressure-injected using a glass micropipette attached to a pneumatic pump (NeuroPhore BH2, Digitimer). The pipette was left in situ for ~5 min before withdrawing it and repeating the procedure on the other side. Injected animals were allowed to recover from the anesthesia before all the pups, injected or not, were returned to the dam in the home cage.

Slicing procedure

Slices were obtained from injected animals between ages P19 and 22, i.e., 4–7 days after the injection. Animals were rapidly decapitated; the brains were removed and sliced in ice-cold artificial cerebrospinal fluid (ACSF; containing, in mM, 125 NaCl, 2.5 KCl, 25 NaHCO₃, 1.25 NaH₂PO₄, 1 MgCl₂, 2 CaCl₂, and 25 glucose constantly perfused with a mixture of 95% O₂-5% CO₂). The slicing angle used was a modification of the thalamocortical slice described in neurons oriented parallel to the slice surface. It involved increasing the downward slope of the brain from the 10° used in the studies (2003) as follows

Data acquisition was done on-line through an A-D converter (Digidata 1322, Molecular Devices) at a sampling rate of 10 kHz and filtered at 3 kHz. Liquid-junction potential was corrected, the access resistance continuously monitored, and bridge potential compensated. Typical access resistance under these conditions was between 6 and 25 MΩ. Data were collected and visualized using the pClamp software (Molecular Devices), exported and analyzed off-line, using custom-written routines in Matlab (The Mathworks).

The resting membrane potential (RMP) was measured immediately after establishing the whole cell recording configuration. Current responses of hyper- and depolarizing rectangular current pulses of 500-ms duration were used to determine basic electrophysiological properties. The time constant of the membrane (τ) was calculated as the time taken to reach 1/e times the minimal membrane potential attained in response to a −50-pA hyperpolarizing current. The input resistance (Rᵢ) of the cell was calculated as the slope of the linear fit to the I-V relationship for currents between −70 and 30 pA; steady-state membrane potential values were used.

Properties of the first action potential generated in response to rheobase current (the minimal injected current pulse of 500-ms duration evoking an action potential) were compared between neurons; responses to twice-rheobase current were used to compare properties of spike trains. Spike amplitude was measured from RMP to the peak of the action potential. Spike threshold was calculated as the potential where the second derivative trace of the membrane potential crossed an empirically determined threshold in a small window before the peak; both absolute and relative (to RMP) values are reported. The latency of the spike was defined as the time from the start of the rheobase current pulse to the time at which the threshold for spiking is reached. The threshold-to-peak amplitude was used to measure the spike half-width (HW), which is the full-width at half-amplitude.

Current-frequency (IF) relationships were plotted for both, the average (IFᵢ) and first instantaneous frequency (IFᵢ) of the spiking responses to increasing current intensities (500-ms-long pulses). The plots were fit with a function describing an integrate-and-fire neuron (Rauch et al. 2003) as follows

The output frequency F is a function of the current, I, and is determined by the following parameters: Fᵢ, the saturating value of the firing frequency, S, a steepness factor that is inversely related to the slope of the IF relationship, and Iᵢ, the rheobase current; θ is the Heaviside function that ensures a nonzero output frequency by ignoring currents lower than rheobase. Only cells where sufficient current intensities were injected to cause a saturation of the average firing rate (typically at frequencies ~40 Hz for excitatory neurons) were used in the analysis. Because the currents delivered to each cell differed, the parameters of the fitted model for each cell were used to generate IF curves for currents ranging from 0 to 1 nA. The average and first and second instantaneous frequencies in the spike train (Fᵢ, F₁, and F₂, respectively) and parameters of spike frequency adaptation were calculated for trains evoked by twice-rheobase currents (only for trains with >6 spikes). Each instantaneous frequency was plotted against the time of each successive spike after the first and fit with a single exponential. The adaptation index (AI) is the ratio of the

Electrophysiology

All recordings were conducted in a submersion chamber constantly perfused (at 3 ml/min) with oxygenated ACSF maintained at 35°C. Slices and cells were visualized using an upright microscope (Olympus BX61WI) equipped with epifluorescence and infrared differential interference contrast (IR-DIC) optics. TMR labeling in cortex was visualized under epifluorescence at low magnification (10× objective), and its location vis-à-vis L4 barrels was determined under IR-DIC. The orientation of L6 neurons with respect to the slice (and their preservation) was determined by following apical dendrites of fluorescently labeled L6 neurons under high magnification (60× objective) for ~300–400 µm. Recordings were restricted to regions of the barrel cortex with well preserved retrogradely labeled neurons; both labeled and unlabeled L6 neurons in these regions were targeted for whole cell recording.

Somatic whole cell patch-clamp recordings were made in current-clamp mode (Multiclamp-700a amplifier, Molecular Devices); a maximum of two neurons were simultaneously recorded. Patch pipettes (borosilicate, 2 mm OD, 1 mm ID; pipette resistance; 4–8 MΩ) were filled with internal solution containing, in mM, 135 K-glucuronate, 4 Mg-ATP, 5 Na₂-phosphocreatine, 0.3 GTP, 10 HEPEs, and 4 KCl; osmolality was adjusted to 280–290 mOsm and pH 7.2. Biocytin (Sigma; 0.25–0.5%) and a green fluorescent dye (Alexa Fluor 488 hydrazide, Invitrogen; 10 µM), were added to the pipette solution prior to recording.

The resting membrane potential (RMP) was measured immediately after establishing the whole cell recording configuration. Current responses of hyper- and depolarizing rectangular current pulses of 500-ms duration were used to determine basic electrophysiological properties. The time constant of the membrane (τ) was calculated as the time taken to reach 1/e times the minimal membrane potential attained in response to a −50-pA hyperpolarizing current. The input resistance (Rᵢ) of the cell was calculated as the slope of the linear fit to the I-V relationship for currents between −70 and 30 pA; steady-state membrane potential values were used.

Properties of the first action potential generated in response to rheobase current (the minimal injected current pulse of 500-ms duration evoking an action potential) were compared between neurons; responses to twice-rheobase current were used to compare properties of spike trains. Spike amplitude was measured from RMP to the peak of the action potential. Spike threshold was calculated as the potential where the second derivative trace of the membrane potential crossed an empirically determined threshold in a small window before the peak; both absolute and relative (to RMP) values are reported. The latency of the spike was defined as the time from the start of the rheobase current pulse to the time at which the threshold for spiking is reached. The threshold-to-peak amplitude was used to measure the spike half-width (HW), which is the full-width at half-amplitude.

Current-frequency (IF) relationships were plotted for both, the average (IFᵢ) and first instantaneous frequency (IFᵢ) of the spiking responses to increasing current intensities (500-ms-long pulses). The plots were fit with a function describing an integrate-and-fire neuron (Rauch et al. 2003) as follows

The output frequency F is a function of the current, I, and is determined by the following parameters: Fᵢ, the saturating value of the firing frequency, S, a steepness factor that is inversely related to the slope of the IF relationship, and Iᵢ, the rheobase current; θ is the Heaviside function that ensures a nonzero output frequency by ignoring currents lower than rheobase. Only cells where sufficient current intensities were injected to cause a saturation of the average firing rate (typically at frequencies ~40 Hz for excitatory neurons) were used in the analysis. Because the currents delivered to each cell differed, the parameters of the fitted model for each cell were used to generate IF curves for currents ranging from 0 to 1 nA. The average and first and second instantaneous frequencies in the spike train (Fᵢ, F₁, and F₂, respectively) and parameters of spike frequency adaptation were calculated for trains evoked by twice-rheobase currents (only for trains with >6 spikes). Each instantaneous frequency was plotted against the time of each successive spike after the first and fit with a single exponential. The adaptation index (AI) is the ratio of the
steady-state frequency to F_1 expressed as a percentage; burst spikes were ignored in measurements of adaptation.

Histological methods

At the end of the recording session, slices were immediately transferred into cold fixative solution containing 4% paraformaldehyde, 0.3% glutaraldehyde, and 15% picric acid in 0.1 M phosphate buffer (PB). Intracellular biocytin was revealed as a black reaction product using the avidin-biotin complex (Vectastain Elite, Rectolab) and a nickel-intensified diaminobenzidine (DAB) reaction. Barrels were revealed using the cytochrome oxidase method (Land and Simons 1985; Wong-Riley and Welt 1980).

Morphological analyses

Axonal and dendritic trees of the biocytin-filled neurons were reconstructed in three-dimension (3D) using the Neurolucida (MicroBrightField) system. Reconstructions were performed using either the $\times 40$ or $\times 100$ oil-immersion objective and not corrected for shrinkage in the z dimension (300 μm thickness of the slice). No obvious shrinkage was observed in the x-y plane, judging from the lack of any tortuosity in the neuronal processes. Dendritic processes were followed to their natural or cut terminations throughout the slice. Axonal processes were however much thinner and often hard to follow through the depth of the slice; the reconstructions are therefore incomplete; only axons with total reconstructed length >1500 μm were included in the analysis. Thickness of CT and CC descending axons were measured 150 μm below the soma; however, the accuracy of measurements of fine caliber axons is limited by the diffraction limit of light microscopy (~ 0.25 μm). Terminations resulting from the slicing process (top and bottom artificial ends) are treated differently from those due to inadequate filling and difficulties in visualization, which occur within the slice thickness (middle artificial ends). All reconstructions were imported into the Matlab environment, where they were analyzed and plotted using custom-written routines. The cells are presented such that the left (negative x) side is the postero-medial direction in cortex and toward the larger barrels in the row; the positive x-direction points anterolaterally and toward the smaller barrels.

Cortical dimensions were measured in every slice in which a neuron was reconstructed. Three laminar boundaries could be discerned in all these slices, the pial surface, lower border of L4 and the white matter (WM), and distances of the soma from these boundaries were measured. The average L4-WM thickness (infragranular thickness; 1.088 ± 0.97 μm; $n = 57$ slices) was used to normalize the vertical dimensions of neurons. The normalization factor (NF) was calculated for each neuron as the ratio of the L4-WM distance in its slice to the average infragranular thickness and only the vertical dimensions were multiplied by the NF. Measures of axonal and dendritic dimensions with respect to laminar boundaries were made on the normalized data while tree structure analyses were performed on the unaltered reconstructions.

Statistical analyses were performed using t-test; the Kolmogorov-Smirnov test was used in cases where the data were not normally distributed. The Bonferroni correction was used when multiple pairwise comparisons were made between two populations. Alpha values used were 0.004 and 0.003 for morpho- and physiological data, respectively (alpha of 0.05 divided by 12 and 16 independent comparisons). Receiver-operator curves (ROC) were calculated for parameters that differed significantly between two populations.

RESULTS

Retrograde labeling of CT cells

An essential element of this study is the unambiguous identification of CT neurons in L6. This was achieved by injecting a dye into the VPm thalamic nucleus where the CT neurons in L6 form terminal axonal arborizations; retrograde transport of the dye therefore selectively labels this subset of L6 neurons. Brain slices visualized 4–7 days after the injections of TMR-dextran into the VPm thalamic nucleus showed a single, wide band of labeled cell bodies in L6 of the barrel cortex (Fig. 1A). The retrograde somatic labeling was restricted to the upper half of L6, while a diffuse neuropil stain was seen in L4, most likely reflecting the anterograde labeling of thalamocortical axon terminals (though axons of L6 cells may also contribute to this label; Fig. 1B). Discrete, large fluorescent points seen in L4 and L5 are nonspecific signals arising from blood vessels or debris and none is neuronal. This pattern of labeling suggests that the injections were restricted to the VPm and did not involve the posterior (Po) nucleus of the thalamus (Herkenkamp 1980; Koralek et al. 1988). Both labeled (TMR-positive/CT) and unlabeled (TMR-negative) somata in L6 were targeted for whole cell recordings (Fig. 1C).

Excitatory neurons in L6

Data from a total of 72 excitatory and 34 inhibitory neurons are presented, all of which were morphologically identified; data from the two classes of neurons are presented separately. Of the excitatory cells, 34 were identified as CT by being TMR-positive; the rest were TMR-negative and selected based on morphological criteria described in the following text.

It has been estimated that about half of all pyramidal neurons in L6 in the rat barrel cortex project to the thalamus (CT), with the other half projecting to the second somatosensory, motor or peri-rhinal cortices but not subcortically, and therefore termed corticocortical, or CC (Zhang and Deschenes 1997). All TMR-positive (CT) neurons in our data had a thick axon (0.61 ± 0.1 μm; $n = 10$; measured 150 μm below the soma) that entered (or headed toward) the white matter before being severed by the slicing process. The population of CC neurons was defined as TMR-negative pyramidal cells without a prominent principal descending axon as illustrated in Fig. 2A. The descending axons of these neurons were of thinner gauge (0.3 ± 0.06 μm; $n = 10$), showed multiple en passant boutons, and rarely entered the white matter. In cases where a branch did extend into the white matter, it could be followed for long distances along the subcortical plate, a course very different from that of CT cells, which descend into the striatum en route to the thalamus. The two main pyramidal populations in L6, CT and CC, could therefore be distinguished based on the retrograde label and the structure of the descending axon; reconstructions of seven examples of each shown in Fig. 2B illustrate this point.

CT neurons were spiny pyramidal neurons of moderate size with somatic diameters of 10–15 μm and an area of 137 ± 43 μm^2 (n = 21). The average distance from the pial surface to the soma was 1,430 ± 129 μm (n = 34). The entire layer 6 extends from ∼1,300 to 1,900 μm below the pial surface; the CT neurons recorded and reconstructed in this study were therefore restricted to the upper portion of L6 (L6a). Spiny (presumed excitatory) TMR-negative cells that were classified as CC were also mostly pyramidal neurons (28 of 38) but also included cells of inverted pyramidal, bipolar, or a nonspecific morphology; this study is restricted to data obtained from pyramidal CC neurons. The size and depth of the somata of CC pyramidal cells (151 ± 43 μm^2 and 1,452 ± 176 μm, respec-
Dendrites of CT and CC neurons

Dendrites of CT cells, like their axons, were stereotypic. About six basal dendrites radiated out from the soma, each branching once to twice on average, and together spanning a region 220 μm in diameter around the soma. A thicker apical dendrite arises from the top of the soma and rises toward the pial surface to end either within L4 or just below. The apical dendrite initially gives off a skirt of oblique branches and then continues to ascend relatively unbranched through L5 finally ending in a tuft of branches in the region around L4; each section constitutes about a third of the total length of the apical dendrite. Dendritic trees of all reconstructed CT cells are displayed in Fig. 3A in ascending order of dendrite length in L4. Cells with apical tufts ending below L4 are therefore on the left, and those with a tuft completely in L4 on the right. The level at which the tuft ends appears correlated to the depth of the soma in L6. The data therefore represent a continuum of neurons distributed within the upper part of L6, with no clear groups emerging from within the CT population based on either the apical tuft or other dendritic parameters as seen by Zhang and Deschênes (1997). Inadequate preservation of axons in the slice precludes such an analysis from being performed on the axon collateral innervation of L4 and L5a.

The CC population, unlike the CT, does seem to comprise of more than one cell type. From the pyramidal neurons classified as CC based on axonal morphology, it is possible to discern at least two subtypes based on dendritic morphology. This is illustrated in Fig. 3B, where the dendritic structure of a variety of CC neurons is represented. The first six reconstructions are examples of one type of CC neuron. This type of cell has been described previously in vivo by Zhang and Deschênes (1997), these were short pyramidal cells with a “star-like” appearance due to a decreasing length and number of apical oblique branches with increas-
ing distance from the soma; we labeled this group CC1.

Another type of TMR-negative pyramidal neuron is illustrated in the next group of nine reconstructions. The apical dendrites of these cells, while also ending without an obvious tuft, display long oblique branches all along their ascent through L5. These branches give the neurons a candelabrum-like appearance; we termed this group CC2.

CC1 and CC2 cells made up most of the corticocortical cells encountered. Other pyramidal CC types included cells with a long, slender apical dendrite ending in L3 or higher, resembling claustrum-projecting cells described in the cat visual cortex by Katz (1987) and neurons with a prominent apical tuft like those of CT cells. Examples of these latter types of pyramidal neurons as well as those of nonpyramidal cells

FIG. 2. Distinguishing CT and corticocortical (CC) neurons in L6. A: photomontages of a TMR-positive (left) and 2 TMR-negative (right) neurons in L6 stained with biocytin; the somata, proximal dendrites, and descending axons of each cell are seen. The principal descending axon (arrow) of the TMR-positive (and therefore CT) neuron is thick, gives out a few branches close to the soma that turn upward (arrowheads), and then descends toward the white matter. Descending axons of TMR-negative cells are thin (arrow), with branches arising at various distances from the soma and extending horizontally in L6 (arrowheads). Inset: a higher-magnification view of adjacent CT (left) and CC axons in the same slice taken 150 μm from the soma. B, top: reconstructions of 7 CT neurons (soma and dendrites in black, axons in red). Bottom: reconstructions of 7 TMR-negative neurons (axons in green), which show a contrasting axonal branching pattern. Corticocortical (CC) neurons are defined based on the lack of retrograde label and the presence of a relatively thin and branched descending axon and horizontally oriented axonal collaterals. The lower boundary of L4 has been aligned in each reconstruction. C: histogram of the number of primary branches arising at various depths of cortex. The distance between L4 and the white matter in each reconstruction was normalized to an average infragranular thickness (see METHODS); this allows a comparison of the morphology of different neurons with respect to cortical lamination. Primary branches of CT axons arise higher in L6; the bold lines are single Gaussian fits to each distribution. CT axons have fewer primary branches along with a greater length of the principal descending axon preserved in the slice; data from 16 CT and 19 CC neurons. D: quantification of axonal orientation with respect to the slice. Left: total length of axonal segments oriented in each of 90 angular bins around the soma (black dot); data represent 16 CT and 19 CC neurons with >1,500 μm of reconstructed axon (thick and thin lines represent means and SDs, respectively). The aspect ratio of this plot (maximal vertical vs. maximal horizontal extent) shows the vertical bias of CT axons; the total reconstructed axon in each group does not vary (right). *, P < 0.05; **, P < 0.01; ***, P < 0.001.
bipolar and inverted pyramidal morphology are also illustrated in Fig. 3B. The analyses in this study are focused on the three main pyramidal cell types encountered, i.e., CT, CC1, and CC2.

The somata and dendritic trees of all reconstructed cells of the CT, CC1, and CC2 groups are overlaid in Fig. 3C; the vertical dimension of the trees have been normalized as described in METHODS. This view illustrates the coverage of
cortical space by the dendrites of the different cell types. Coverage is quantified in two aspects: the total dendritic length and the maximal horizontal span, both as a function of cortical lamination; these are plotted on the right for each of the three groups. CT cells have a narrower dendritic span compared with CC cells in general (233 ± 59 vs. 337 ± 59 μm; n = 21 each). Other differences are specific to the subgroups of CC cells; for example, CC1 cells have lesser dendritic length and narrower dendritic spans in L4 and L5a compared with both CC2 and CT cells. Somata of both CT and CC cells in this sample are located at similar depths within L6 (1,430 ± 129 vs. 1452 ± 176 μm below the pia, and 632 ± 119 vs. 652 ± 108 μm below L4); they also did not differ in size. However, the total surface area (soma + dendrites) of CT cells tends to be less than that of CC neurons (7,934 ± 1,802 vs. 10,137 ± 3,185 μm², P = 0.011); the significance of this difference did not however overcome the stringent Bonferroni correction for multiple pair-wise comparisons. All morphological parameters of CT, CC1 and CC2 neurons are summarized in Table 1.

In summary, the dendritic integration and axonal projection spaces of CT and CC neurons in L6 vary. CT neurons appear to both receive from and send information to L4, while CC neurons project their axons and dendrites mainly within the infragranular laminae. A new finding is the existence of two distinct pyramidal CC subtypes based on their dendritic structure; further study would be required to reveal any corresponding difference in axonal structure.

Physiological properties of CT, CC1, and CC2 neurons

The morphology of a neuron determines to an extent its biophysical and firing properties (Bekkers and Häusser 2007; Mainen and Sejnowski 1996). The physiological properties of the three morphological subtypes of L6 pyramidal neurons were therefore examined. Data were obtained from 34 CT and 28 CC neurons; of the latter, 6 were classified as CC1 and 11 as CC2. The rest either could not be classified due to inadequately recovered dendritic morphology (n = 6) or belonged to distinctly different pyramidal subtypes (n = 5).

The resting membrane potential (RMP) of CT and CC neurons was close to −70 mV, and the input resistance was also similar (146 ± 47 and 152 ± 56 MΩ, P = 0.6). The membrane time-constant (τ_memb), however, varied significantly between CT and CC cells (12 ± 2.7 vs. 16.6 ± 3.7 ms, P = 6.5e−5). Further differences were seen in the spiking properties of the three cell types, both in the nature of the individual action potential as well as spike trains. First the current intensities required to bring CT neurons to their spiking thresholds were significantly higher than those required for CC cells (196 ± 80 vs. 129 ± 46 pA, P = 6.3e−5). This measure, the rheobase of the neuron, is used as the reference stimulus intensity for the comparison of single spike properties of different neurons. The first spikes discharged in response to rheobase current differed between the CT and CC neurons in their latency from the start of the pulse (67.9 ± 22.1 vs. 140.3 ± 44.9 ms, P = 7.9e−10) and half-width (0.77 ± 0.13 vs. 1.01 ± 0.2 ms, P = 1.2e−5); the difference in spike width is due to a steeper falling phase of the action potentials in the former (54 ± 16 vs. 82 ± 14 mV/ms). The fall slope of the spike also differentiates CC1 and CC2 neurons, but while a difference in half-width is also seen, it does not overcome the Bonferroni correction. These properties of exemplary CT and CC cells as well as population averages are illustrated in Fig. 4A.

Trains of action potentials elicited in response to increasing current intensities revealed further differences among CT, CC1, and CC2 cell types. All three responded with regular spike trains in response to 500-ms-long depolarizing current pulses, but the CC neurons fired high-frequency doublets and triplets in the beginning of the spike trains even at low current injections; responses to twice-rheobase currents in three exemplar neurons are illustrated in Fig. 4B. A minority of the CT neurons (2 of 34), but none of the CC cells showed phasic (2–3 action potentials followed by no spiking) spike responses. These spiking differences are highlighted in the current-frequency (I-F) relationships plotted in Fig. 4C. No differences between the three groups were seen when the average train frequency (F_ave) was plotted against the injected current. However, the first instantaneous frequency (F_1) relationship to current was clearly different in the examples shown and in the population averages. CC1 neurons fired the most obvious burst spikes in response to the smallest currents, resulting in the steepest I-F_1 curve; CC2 responses were mainly in the form of doublets of slightly lower frequencies compared with CC1 cells, while CT neurons never fired in burst mode. The first- and second-instantaneous frequencies in response to twice-rheobase currents and the I-F_1 curve slopes clearly distinguished each pyramidal cell type in L6 (Fig. 4D). The physiological features of different excitatory L6 neurons are summarized in Table 2.

Because it is unlikely for the thalamic injections to have labeled the complete CT population in the barrel cortex, TMR-negative cells could be either CC or unlabeled CT neurons. A group of TMR-negative neurons, (n = 22) had a morphology indistinguishable from TMR-positive (CT) neurons: all displayed thick descending axons with rising collaterals and an apical dendritic tuft in L4. This group of neurons also resembled CT neurons in all of their physiological parameters. The remaining TMR-negative pyramidal neurons constituted the CC group which displayed homogenous morphological and physiological properties distinct from those of the CT neurons.

Inhibitory L6 neurons

Data from 32 inhibitory L6 neurons (L6i) were recorded, some of which had an obvious nonpyramidal morphology in

FIG. 3. Dendritic features of CT and CC neurons. A: dendrites and somata of 21 CT neurons arranged with respect to the length of apical tuft in L4 vs. L5a (shaded regions); the vertical dimension of all reconstructions have been normalized with respect to the L4-white matter (WM) distance as described in METHODS. No clear distinction can be seen with respect to the L4 or L5 location of the apical tuft of CT neurons. B: CC neurons with qualitatively different dendritic trees. Apical dendrites of the 1st 6 (from left) cells resemble fir trees with progressively shorter and fewer apical oblique branches (CC1). The next 9 have long oblique branches in L5, giving them a candelabrum-like appearance (CC2). CC neurons with other dendritic morphologies were also encountered, but less frequently; examples of these include, from right, inverted pyramidal and bipolar neurons, pyramidal cells with a thin apical dendrite extending into L3 and others with an obvious apical tuft. C: quantification of dendritic innervation of the slice by CT, CC1, and CC2 neurons. Left: the soma and dendrites of 21 CT, 6 CC1, and 9 CC2 neurons are overlaid, centered on their somata. The mean depth of the somata in L6, and SD, are shown alongside each group. The total dendritic length and maximal dendritic span of each cell type are compared with respect to cortical lamination on the right. *, P < 0.05; **, P < 0.01.
the DIC image. The identity of each cell was confirmed by light microscopy based on morphological criteria such as smooth or beady dendrites and dense axonal ramifications with large boutons (Martin et al. 1983; Ribak 1978). In occasional cases when no structure was recovered, the neuron was considered to be inhibitory if it either displayed high-frequency spike trains with minimal accommodation (n = 4) as defined in Gupta et al. (2000) or if an inhibitory effect could be directly measured in another neuron (n = 1).

Based on the axonal morphology of L6i cells that were recovered (n = 27), two distinct anatomical types of L6i cells could be identified. The first class of inhibitory neurons, described classically as basket cells, had axons ramifying within infra-granular layers, with no restriction by columnar or laminar boundaries visible in their arborization. Both large and small basket-like cells were encountered, differing mainly in the density and extent of their axonal arbors. Because most of the axon of these neurons was restricted to the infragranaular laminae, we labeled them L6i-targeting L6i neurons or L6iL6. In contrast, another set of inhibitory L6i cells encountered showed distinct laminar preferences in their axonal arborization. The axon of these cells arose from the top of the soma to give three to four branches within L6 (or deep in L5) that ascended back into L6, densely innervating the region around the soma. The main trunk (or 2–3 branches) continued to ascend to branch again within or just below L4 with the most profuse collateral branching innervating upper L4 and lower L3. This creates a clear bilaminar innervation zone in layers 4 and 6, and earning these neurons the label of L4-targeting L6i cells, or L6iL4. Of the 32 inhibitory cells in our data, 9 could be classified as L6iL4 and another 9 as L6iL6; the rest could not reliably be classified into either of the two classes, either due to insufficient filling of the axon or because the axon was severed too early (e.g., in lower L5) to make the distinction.

Physiologically the two types of L6i neurons differed in the properties of both single spike and spike trains. Single spikes elicited by rheobase currents in L6iL6 cells were smaller (5.5 vs. 82.6 mV, P < 0.07 ms, 5.5 vs. 82.6) and another 9 as L6iL6; the rest could not be reliably classified as L6iL6 cells; the differences in rheobase and spike amplitude did not however overcome the Bonferroni correction for statistical significance.

On sustained depolarization, L6iL4 neurons tended to fire high-frequency trains with minimal adaptation. Both average and first instantaneous frequencies in response to twice-rheobase current were higher in these neurons compared with L6iL6 neurons (165 ± 50 vs. 64 ± 33 Hz, P = 7.4e-4 and 201 ± 48 vs. 88 ± 23 Hz, respectively, P = 1.1e-4) as well as the maximal saturating frequencies (221 ± 37 vs. 129 ± 57 Hz, P = 3.0e-3). Spike
frequency adaptation in both cell types were comparable at twice-rheobase currents though L6iL4 neurons did show greater adaptation in trains evoked by lower currents.

The two inhibitory groups therefore, like the morphologically distinct excitatory cells, are also associated with contrasting physiological properties. This is graphically illustrated in Fig. 5, where along with the morphology of two exemplar neurons of each class, four physiological parameters are plotted. Two of these, the rheobase current and spike half-widths, when plotted against each other, result in separate clusters for each morphological type: L6iL6 cells are associated with a higher rheobase and narrower spikes compared with L6iL4 neurons. A few exceptions to this pattern are observed suggesting that locally arborizing neurons could include subtypes with differing physiology, as seen in the basket cell population in general (Wang et al. 2002). The physiological parameters of inhibitory neurons and the differences between the two L6i cell types and those between inhibitory and excitatory neurons in general, are summarized in Table 3.

DISCUSSION

Anatomical data show that L6 neurons participate in both a thalamocortical circuit involving L4 and a highly integrative infragranular intracortical network (Zhang and Deschénes 1997). In this study, we have undertaken to characterize the morphology and electrical properties of L6 neurons that participate in either of these networks. We show that L6 neurons...
TABLE 2.
Physiological parameters of CT, CC1, and CC2 pyramidal neurons

<table>
<thead>
<tr>
<th>Physiological Parameters</th>
<th>CT (34)</th>
<th>CC (38)</th>
<th>P Value</th>
<th>ROC Area</th>
<th>CC1 (6)</th>
<th>CC2 (11)</th>
<th>P Value</th>
<th>ROC Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMP, mV</td>
<td>−70.2 +/- 3.6</td>
<td>−70.5 +/- 4.5</td>
<td>0.76</td>
<td>−71.0 +/- 3.4</td>
<td>−70.6 +/- 4.9</td>
<td>0.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input resistance, MΩ</td>
<td>146.2 +/- 47.0</td>
<td>152.1 +/- 56.2</td>
<td>0.63</td>
<td>133.3 +/- 32.4</td>
<td>154.0 +/- 38.9</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Membrane tau, ms</td>
<td>12.0 +/- 2.7</td>
<td>16.5 +/- 4.0</td>
<td>6.5E-07</td>
<td>0.84</td>
<td>18.1 +/- 3.4</td>
<td>16.4 +/- 3.7</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>Rheobase, pA</td>
<td>195.6 +/- 79.8</td>
<td>133.4 +/- 56.5</td>
<td>6.3E-04</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP1 amplitude, mV</td>
<td>101.7 +/- 6.7</td>
<td>102.0 +/- 8.8</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP1 latency, ms</td>
<td>67.9 +/- 22.1</td>
<td>137.1 +/- 50.6</td>
<td>7.9E-10</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP1 half-width, ms</td>
<td>0.77 +/- 0.12</td>
<td>1.02 +/- 0.16</td>
<td>1.2E-09</td>
<td>0.88</td>
<td>0.85 +/- 0.15</td>
<td>1.08 +/- 0.17</td>
<td>7.4E-03</td>
<td>0.84</td>
</tr>
<tr>
<td>AP1 rise slope, mV/mVms</td>
<td>99.3 +/- 18.5</td>
<td>105.1 +/- 22.6</td>
<td>0.24</td>
<td>106.3 +/- 27.0</td>
<td>107.8 +/- 17.4</td>
<td>0.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP1 fall slope, mV/mVms</td>
<td>−79.1 +/- 13.8</td>
<td>−50.7 +/- 13.2</td>
<td>3.6E-13</td>
<td>0.93</td>
<td>−68.3 +/- 9.4</td>
<td>−45.1 +/- 9.9</td>
<td>7.7E05</td>
<td>0.94</td>
</tr>
<tr>
<td>AP1 threshold-absolute, mV</td>
<td>−30.4 +/- 5.0</td>
<td>−32.2 +/- 4.7</td>
<td>2.4E-02</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP1 threshold-relative, mV</td>
<td>40.0 +/- 4.4</td>
<td>38.3 +/- 4.5</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP1 fAHP amplitude, mV</td>
<td>−13.7 +/- 3.4</td>
<td>−9.4 +/- 4.2</td>
<td>1.1E-05</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP1 sAHP amplitude, mV</td>
<td>−17.1 +/- 2.9</td>
<td>−15.5 +/- 4.5</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP1 fAHP latency, ms</td>
<td>4.4 +/- 3.4</td>
<td>9.0 +/- 5.3</td>
<td>4.8E-07</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP1 sAHP latency, ms</td>
<td>17.6 +/- 7.6</td>
<td>63.7 +/- 26.3</td>
<td>7.3E-15</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max avg frequency, Hz</td>
<td>39.0 +/- 14.8</td>
<td>48.9 +/- 12.8</td>
<td>0.08</td>
<td>51.6 +/- 17.7</td>
<td>46.2 +/- 10.0</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max 1st inst. frequency, Hz</td>
<td>142.1 +/- 57.4</td>
<td>223.8 +/- 59.6</td>
<td>1.5E-06</td>
<td>0.83</td>
<td>268.7 +/- 47.1</td>
<td>198.2 +/- 64.6</td>
<td>4.2E-02</td>
<td>0.82</td>
</tr>
<tr>
<td>Max 2nd inst. frequency, Hz</td>
<td>74.1 +/- 35.9</td>
<td>121.0 +/- 59.2</td>
<td>3.9E-03</td>
<td>0.75</td>
<td>169.5 +/- 63.2</td>
<td>95.8 +/- 48.0</td>
<td>1.6E-02</td>
<td>0.83</td>
</tr>
<tr>
<td>2×Rheobase: Avg. freq., Hz</td>
<td>28.4 +/- 6.1</td>
<td>25.0 +/- 6.4</td>
<td>3.1E-02</td>
<td>0.70</td>
<td>24.3 +/- 4.0</td>
<td>24.7 +/- 4.8</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>2×Rheobase: 1st inst. freq., Hz</td>
<td>61.7 +/- 24.3</td>
<td>140.1 +/- 69.6</td>
<td>2.3E-05</td>
<td>0.87</td>
<td>224.5 +/- 39.9</td>
<td>108.8 +/- 50.1</td>
<td>3.2E-04</td>
<td>0.97</td>
</tr>
<tr>
<td>2×Rheobase: 2nd inst. freq., Hz</td>
<td>36.4 +/- 12.2</td>
<td>53.7 +/- 37.2</td>
<td>4.3E-02</td>
<td>0.63</td>
<td>101.3 +/- 50.7</td>
<td>37.2 +/- 11.6</td>
<td>3.8E-04</td>
<td>0.91</td>
</tr>
<tr>
<td>2×Rheobase: adaptation index</td>
<td>54.1 +/- 11.2</td>
<td>80.0 +/- 10.4</td>
<td>1.2E-02</td>
<td>0.95</td>
<td>91.0 +/- 1.1</td>
<td>75.6 +/- 11.2</td>
<td>8.4E-03</td>
<td>1.00</td>
</tr>
<tr>
<td>2×Rheobase: adaptation tau, ms</td>
<td>20.9 +/- 14.2</td>
<td>6.9 +/- 5.0</td>
<td>2.3E-05</td>
<td>0.86</td>
<td>4.6 +/- 1.7</td>
<td>8.6 +/- 7.1</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>IFavg fit: saturation freq, Hz</td>
<td>79.8 +/- 37.6</td>
<td>4.6E-02</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFavg fit: slope</td>
<td>175.5 +/- 92.5</td>
<td>348.2 +/- 295.5</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFavg fit: rheobase, pA</td>
<td>196.3 +/- 76.2</td>
<td>162.6 +/- 71.9</td>
<td>4.6E-02</td>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFinst fit: saturation freq, Hz</td>
<td>758.1 +/- 967.6</td>
<td>306.5 +/- 201.6</td>
<td>1.4E-02</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFinst fit: slope</td>
<td>1817.0 +/- 2341.1</td>
<td>332.3 +/- 643.0</td>
<td>5.8E-04</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFinst fit: rheobase, pA</td>
<td>215.3 +/- 133.2</td>
<td>172.9 +/- 82.0</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFinst fit slope/IFavg fit slope</td>
<td>10.78 +/- 8.50</td>
<td>1.27 +/- 1.83</td>
<td>2.9E-07</td>
<td>0.95</td>
<td>0.05 +/- 0.05</td>
<td>1.44 +/- 1.72</td>
<td>3.5E-04</td>
<td>1.00</td>
</tr>
</tbody>
</table>

A comparison of physiological properties of CT and CC neurons (left) and CC1 and CC2 neurons (right). P values of t-tests and ROC areas for each differing parameter (P < 0.05) are listed. Parameters differing significantly after the Bonferroni correction (P < 0.0031) are indicated in bold. Number of neurons are in parentheses. RMP, resting membrane potential; AHP, afterhyperpolarization.

projecting to L4 have electrical properties that clearly distinguish them from those ramifying in infragranular laminae. We propose that L4-projecting excitatory and inhibitory L6 neurons compose, together with their L4 targets, discrete cortical subcircuits that are tuned for specific manipulations of the sensory information.

Morphology of excitatory L6 neurons

The labeling pattern in the barrel cortex following injections in the VPm was similar to earlier studies (Herkenham 1980; Killackey and Sherman 2003) and the morphology of CT (TMR-positive) neurons recorded in vitro closely resemble those previously described in vivo (Zhang and Deschênes 1997). We used the consistent and stereotypic morphology of this class of neuron as a template to compare unlabeled pyramidal cells with contrasting axonal (CC) morphology. Unlabeled neurons that morphologically resembled CT cells also resembled them physiologically, thus supporting the criteria used for identifying CC neurons in this study.

CT cells in our sample likely include neurons projecting to the VPm alone and those targeting both VPm and Po thalamic nuclei; the two were previously reported to have different sites of apical tuft and axon collateral ramification (Killackey and Sherman 2003; Zhang and Deschênes 1997). However, dendritic tufts of CT cells reconstructed in this study form a continuum between being located completely within L4 to completely below L4 (Fig. 3A). Neither dendritic tufts nor physiological properties (tested between cells at extreme ends of the distribution) could distinguish two CT types. Anatomical differences between CT neurons may therefore also reflect a difference in somatic depth (with apical dendrite length remaining constant), and ergo, neural birth time.

The two CC neuron types distinguished here have counterparts reported in earlier studies, CC1 cells described as star-like by Zhang and Deschênes (1997) and CC2 as nonufted pyramidal neurons by Zarrinpar and Callaway (2006); we report differences in dendritic length and span as a function of cortical lamination between the two. CT neurons have narrower dendritic spans than either of the CC subtypes and greater dendritic lengths in L4, suggesting that inputs to each population arise from different regions of the cortical column (Zarrinpar and Callaway 2006). CT cells may receive far greater L4 and thalamic input while CC neurons could sample from a larger subset of supragranular cells whose axons descend vertically into infragranular laminae (Jensen and Killackey 1987; Larsen and Callaway 2006). Such analyses of lamina-specific contributions of each cell type allow for neuronal morphology to be studied in the context of a larger cortical architecture.

Distinct electrical responses of excitatory L6 neuron subtypes

Physiological differences were observed between all three morphological types of pyramidal L6 neurons. Shorter mem-
brane time constant and larger rheobase in CT neurons suggest shorter synaptic integration times compared with CC cells. Faster spike repolarization in CT neurons, presumably due to faster K channels, results in narrower spikes, which would lead to smaller calcium currents, reduced transmitter release, and be reflected finally in the postsynaptic responses evoked by these neurons (Geiger and Jonas 2000; Ishikawa et al. 2003). Assuming similar differences in vivo, eliciting a spike in a CT cell would require stronger and more synchronous input than required to discharge CC neurons. CT cells may therefore respond selectively to strong principal-whisker stimulation, whereas CC neurons could reliably (owing to their burst-like responses) signal the presence of weak, nonspecific whisker deflections, e.g., air puffs. Evidence supporting such predictions come from reports that many L6 neurons in the rodent somatosensory cortex fail to respond to whisker stimulation and when they do, show a large variability in their latency (Armstrong-James et al. 1992; de Kock et al. 2007; Wilent and Contreras 2004). The extremely short latencies to surround whisker stimulation reported for neurons in this lamina (Carvell and Simons 1988) correspond with the wider dendritic fields, low rheobase, and burst-like responses of CC neurons.

While cells were encountered in both barrel and septal columns, it was often not possible to reliably assign cells to either category. The symmetrical dendritic morphology of each cell and homogeneity in the electrical properties of each excitatory cell population argue against the existence of distinct barrel and septal subpopulations. Differences in circuitry and functional responses with respect to barrels and septa remain to be tested.

Classification of excitatory L6 neurons

There are no known cytochemical markers that distinguish CT and CC neurons. While differences between L6 neurons
have been reported based on the use of aspartate or glutamate as neurotransmitter (Kaneko et al. 1995), these have not been mapped onto the CT and CC populations (Conti et al. 1987; Giuffrida and Rustioni 1988). This study further stresses the inhibitory neurons in our study were a heterogeneous group. Nevertheless, two classes of either basket or Martinotti cells, both known to have distinctive properties, are unique features among infragranular neurons. CC cells, however, have varied dendritic morphologies (possibly representing different functional groups) and have in common the infragranular arborization of axon collaterals and an absence of a subcortical target. Furthermore, the morphological groups of L6e neurons can be reliably distinguished based on physiological features. Each parameter that differs significantly between CT and CC neurons distinguishes them with 77–95% reliability (ROC areas in Table 2); combinations can result in a classification performance approaching 100% (Supplemental Fig. S1).

While both CT and CC neurons in this study fired regular spike trains, sharp electrode recordings from CC-like neurons pooled across rat visual and somatosensory areas showed an exclusively phasic firing pattern (Mercer et al. 2005; West et al. 2006). In the mouse visual cortex, however, both cell types fired regular spike trains, but CT neurons were more excitable (Brumberg et al. 2003). CT neurons in this study had a higher rheobase; a similar current injection would result in slightly (but insignificantly) greater number of spikes in CC neurons (Fig. 4C). These inconsistencies could arise from ambiguity in neuronal identity (antidromic excitation or phasic firing not reliably identifying CC neurons) but may also reflect modality-specific (visual vs. somatosensory) differences because these cortices express distinct sets of genes and proteins tightly related to neural morphogenesis and connectivity (Leamay et al. 2008).

Inhibitory cell types in L6

Judging from their morphology, the inhibitory neurons in our study were a heterogeneous group. Nevertheless, two distinct interneuron types could be identified based on contrasting laminar innervation profiles, a scheme very similar to L6 of the macaque V1 (Lund et al. 1988), where the targeting of L4 by specific L6i subtypes is striking. The proportion of L6 interneurons with interlaminar projections is unknown, but it is unlikely to be small: 50% of recovered L6i neurons in this study were determined to have an upward projecting axon with branching in L4, similar to the estimated proportion of Martinotti cells in this layer (Markram et al. 2004; Wang et al. 2004).

L6i,L4 cells include a subset of somatostatin-expressing neurons (Ma et al. 2006) and could belong to the morphological class of either basket or Martinotti cells, both known to have ascending projections from infragranular laminae (Kisvarday et al. 1987; Wang et al. 2004). Similarly, L6i,L6o neurons could either be parvalbumin (PV)- or cholecystokinin (CCK)-expressing interneurons (Kawaguchi and Kondo 2002), each having characteristic physiological properties. While it is likely
that the two L6i subtypes defined here consist of more than one molecular and/or electrophysiological class (evidenced in the variation in Fig. 5B), their different axonal laminar profiles may be associated with contrasting synaptic properties (Cossart et al. 2006; Dumitriu et al. 2007; Kapfer et al. 2007), together contributing to distinct laminar interactions.

Functional implication of cortical subcircuits

This study emphasizes the functional links between layers 6 and 4. Both excitatory and inhibitory neurons selectively project from L6 to L4, thus linking the two major thalamoreceptive laminae (Herkenham 1980; LeVay and Gilbert 1976). While the excitatory projection from L6 has been studied with its role in generating L4 receptive fields in mind (Ahmed et al. 1994; McGuire et al. 1984; Staiger et al. 1996; Stratford et al. 1996), inhibitory effects have also been observed in L4 following L6 stimulation (Hirsch 1995; Wirth and Lüscher 2004). L6iL4 neurons, owing to their low rheobase, are likely to be the first cells responding to stimulation of L6 and could mediate the observed inhibition in L4. While the excitatory projection to L4, a branch of the corticothalamic projection, could be involved in synchronizing activity in thalamic neurons and thalamoreceptive cortical neurons (Jones 2002), the role of the parallel inhibitory projection is less clear.

In summary, the morphologically and physiologically defined cell types in L6 likely constitute functionally distinct subcircuits. CT and L6iL4 neurons link the two thalamoreceptive laminae; CC and L6iL6 cells mediate cross-columnar interactions in the infragranular laminae. Based on their physiological properties, CC and L6iL4 cells are likely to respond to low-intensity stimuli, thus exciting infragranular activity across columns to nonspecific whisker stimuli, while inhibiting L4 neurons within the same column; stronger and more specific stimuli will evoke CT cell responses and recruit the high-rheobase, fast-spiking L6iL6 cells. Such an interconnected network of neurons belonging to different subcircuits is likely to be a ubiquitous feature of cortex (Le Be et al. 2007; Morishima and Kawaguchi 2006); elaborating the structural and physiological properties of such networks is central to understanding cortical function.

ACKNOWLEDGMENTS

We thank S. Fusi for discussions, J. Hipp and T. Ott for help with statistical methods, S. Rickauer for reconstructions, D. Kuhl for support and discussions, L. Rettig for helpful comments. We are indebted to K. Martin for invaluable discussions, support, and reading previous versions of this manuscript.

GRANTS

This work was supported by an European Union Grant EU-FP6-2005 IST-1583 to K.A.C. Martin.

REFERENCES

