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Stochastic resonance in pattern recognition by a holographic neuron model
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The recognition rate of holographic neural synapses, performing a pattern recognition task, is significantly
higher when applied to natural, rather than artificial, images. This shortcoming of artificial images can be
largely compensated for, if noise is added to the input pattern. The effect is the result of a trade-off between
optimal representation of the stimulus~for which noise is favorable! and keeping as much as possible of the
stimulus-specific information~for which noise is detrimental!. The observed mechanism may play a prominent
role for simple biological sensors.
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I. INTRODUCTION

The traditional view on noise in information processing
that the more noise occurs in a process, the worse the pro
performance is. Based on the observation that noise is u
uitous in natural systems, whose processing capabilities
still unchallenged by artificial systems, this view has recen
changed. Gradually, the idea has emerged that noise act
could be used toimprovethe efficiency of computations. A
the paradigm of such a phenomenon, the principle of s
chastic resonance has been identified. In its early days
phenomenon of stochastic resonance was strongly tied to
existence of a periodic weak subthreshold oscillation. Wh
to this signal, relatively large-scale noise was added, the
tem was able to cross the threshold, and an improvemen
the signal was obtained. This concept was first discusse
the context of climate dynamics@1#, and then found in elec
tronic circuits@2#. Later, the phenomenon was proposed@3#
and verified in lasers@4,5#, and finally found in magnetic
systems@6#, in neurons@7#, and in chemical reactions@8#.
More recently, numerous examples were found in the an
sis of biological sensors. As an impressive example, the c
fish has been shown to use stochastic resonance to cat
prey ~e.g., Refs.@9,10#!. In its most general form, stochast
resonance can be defined as a nonlinear cooperative e
whereby the addition of a random process, or noise, t
weak signal, results in an enhanced response of the sy
~thus dropping the condition of periodicity!. Investigations
on the use of noise in the context of signal processing ar
great technological importance. Miniaturization of compu
chips naturally generates conditions, where the~thermal!
noise is of the order of the signal. For signal processing,
cortex in many respects still is the most efficient device, a
it operates at conditions where the noise level is compar
to the level of the signal. This motivates the expectation t
the scientific focus will shift from noiseless computation
high signal power to computation at high levels of noise a
low signal power.

*Email address: ruedi@ini.phys.ethz.ch
†Present address: Rand Afrikaans University, RSA-2000 Joh

nesburg, Republic of South Africa.
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In our paper, we report on the observation of a stocha
resonance effect that occurs in holographic neural syna
~for short: holographs! during pattern recognition, providing
an example of stochastic resonance without underlying p
odicity. Holographs are part of the family of analo
correlation-based, associative, stimulus-response memo
where information is mapped onto the phase orientation
complex numbers~operating, however, differently from stan
dard connectionist models!. The holographic method
@11–14# is of interest in itself as it exhibits some remarkab
efficiency characteristics. Unfortunately, and in spite of t
long tradition of work on closely related approaches in op
cal holography@15–17#, the method seems to have lacke
widespread scientific interest. Holographs have been sh
to be effective for associative memory tasks, generalizat
and pattern recognition with changeable attention@11–14#.
More specifically, investigations have shown@13# that effi-
cient learning of arbitrary relationships between input a
output with no constraints on topology or separability, hi
encoding densities, robustness with respect to low numer
resolution, good saturation, generalization and classifica
properties, fast learning rates and low steady-state error r
are characteristics of the method. From extended studie
has been observed that the performance of the holog
depends in a surprising way on the statistical properties
the input data@12,13#, which can be condensed in an asym
metry index. The lower this index, the better the performan
of the holograph. In particular, it has been found@11,13# that
there is an important distinction between artificial and na
ral images, since the latter tend to have lower asymme
indices, implying that learning of artificial images is mo
difficult. We will show that for this class, a dramatic perfo
mance improvement can be obtained if noise is added to
input signal. This observation of stochastic resonance is
main result of the paper. Understanding this observat
sheds some light on how biological signal processing co
successfully operate in noisy environments.

II. HOLOGRAPH SETUP

Given a family of input patternsS, for each patterns an
input vectorS is derived, and related to a desired respon
vectorR, forming in this way an association pair. The inp

n-
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vector and the response vector entries are composed of
plex numbers, i.e.,S5(S1 , . . . ,Sn), with Sj5l je

Iu j , j
P$1, . . . ,n%, wheren, e.g., denotes the number of pixels
the input picture, andI denotes the imaginary unit. Similarly
the output vector has the formR5(R1 , . . . ,Rm), with Rj
5g je

If j , j P$1, . . . ,m%. In a more general formulation,Sj
and Rj can be generalized as multidimensional comp
numbers@12,13#. The exact form of the coding may depen
on the typical input pattern. For any coding, the essen
information is captured in the phase, whereas the assoc
modulus may be used as an attention parameter in the i
and to express the confidence level of the output. In
investigation, this feature will remain unexplored: the mod
will be set to unity.

The heart of the holograph is anm3n matrix X, with
arbitrarily chosen complex initial entries. During learnin
presented patternssPS update the matrix iteratively as

X i 115X i1S̄a( i )
T

•S Ra( i )2
1

c
Sa( i )•X i D , ~1!

wherec5( i 51
n l i is an input pattern specific normalizatio

constant, and where indexa( i )P$1, . . . ,s5uSu% indicates
the pattern presented at stepi. If this iterative scheme con
verges, the ‘‘relation’’ betweenS and R is stored inX` .
From Eq.~1!, with the help of the fixed point, the correspo
dence between input and response patterns is given by

$Rl%5H 1

c
Sl•X`J , l P$1, . . . ,s%. ~2!

The algorithmic complexity of the process isO(nm). To
implement s associations$sl ,r l% l 51, . . . ,s between stimulus
and classification~in their complex vector representation
this relationship is expressed as$Sl ,Rl% l 51, . . . ,s), thus
O(nms) operations are needed, and the storage requirem
is of the order ofmn. It is of importance to note that th
storage space does not grow, if more patterns are to
learned, and the time needed for the learning process
grows linearly withs. With growing s, the holograph may
enter a saturation region, leading to a decreased performa
To avoid this, Khan@14# proposesL5s/n,0.08. In our in-
vestigations, we operate atL50.0056, which is way below
the proposed saturation threshold.

III. HOLOGRAPHIC PATTERN RECOGNITION

When an object, e.g., a picturesPS, is to be processed b
the holograph, it first is encoded into complex numbers
the coding functionms :s→S. At the end of the process,
decoding functionmr will convert the complex-valued re
sponseR to a real-valued response~or feature! vector,
mr :R→ r̃PRm. The particular responser̃ will then be com-
pared to a set of desired responsesR5$r1 , . . . ,r k%. During
the pattern recognition process, association pairs are d
mined as$si ,r j%, where r j is the element ofR with the
minimal distance tor̃ . To evaluate the distances in the spa
of output vectors, we use the Euclidean distancei•i , normal-
ized by the dimension of the output-vector space,m.
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To measure the performance, we determine the ratio
tween the number of correct to the number of total asso
tions, called the~statistical, nontemporal! recognition rater.
The errorsd(r j , r̃ j ) between generated and desired respon
yield another measure of performance. However, it is w
known that the correlation between the recognition rater and
( j 51

s d(r j , r̃ j ) is generally not too strong.
For our experiments, we used gray-level pictures~see Fig.

1!, represented as matricesG5(gi j ), wheregi j denotes the

gray-scale intensity value in the range$0, 1
256, . . . ,255

256%, at
location i, j. From the matrices, via concatenation of t
rows, the input vectors are obtained. When mapping th
entries to complex numbers, it is desirable to keep the la
away from the target phase-space boundaries$0,2p%. Other-
wise, by small recall errors or noise, points may be pus
over the boundary@12#, which may have devastating effec
~e.g., changing very small brightness differences into ma
mal brightness differences!. To prevent this, all values wer
shifted by 1

512. To the shifted valuesĝl , l P$1, . . .,256%,
optionally noisez from a clipped Gaussian random variab
was added, before they were mapped onto the complex
main according toms(gj ):u j52p(ĝ j1zj ). The desired out-
put vectorsr were composed of uniformly distributed ran
dom numbers from the unit interval. Similarly to the inp
vectors, the output vectors are mapped into the complex
main by the mapmr(f j ):wj5f j /2p. Of course, other,
more intrinsically application-related output vectors could
chosen. They should, however, be well separated from
another. The higher the dimensionm of r , the easier it is to
meet this condition. The linear dependence of the comp
tion time onm, however, makes a good selection ofm worth-
while.

IV. NATURAL VERSUS ARTIFICIAL IMAGES

We performed four sets of experiments, in which the re
ognition ratesr were computed after the presentation ofs

FIG. 1. ~a! Artificial gray-scale image.~b! Artificial image with
noise~meanm50 ands l

250.1). ~c! Natural gray-scale image.
8-2
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input vectors. It will be indicated whether each input vec
was presented exactly once, or, when the pattern was
lected by random, whether repeated occurrence was t
ated. In the latter case, we chose the association indexa( i )
from a uniformly distributed discrete random variable
$1, . . . ,s%. In this way, over a long learning history, eve
association pair appeared with equal probability. During
experiments, the boundary distance was kept ate50.05, the
noise had meanm50 and the elements of the matrixX were
initially set to 0.

In the first experiment, associations between windo
from natural photographic pictures@see Fig. 1~c!# and a set
of random vectors of dimensionm540 were learned (s
510 association pairs!. From each input picture, an arbitrar
30360 pixel-sized window was selected. This leads to
input-vector length ofn51800, which is equal to the size o
the artificial images used. In Ref.@14# it was proposed to
choose an asymmetryA,A050.6. The asymmetries of ou
pictures massively violate this condition, see Table I. Nev
theless, the results shown in Figs. 2 and 3~curves labeled by
n) confirm the earlier reported excellent holograph perf
mance. Even for sets where more than half of the ima
failed to satisfy the condition massively, we found fast co
vergence to the optimal recognition rate of 1 within 4 tra
ing epochs of random input pattern selection~where an ep-
och denotes one pass through the whole set of input vect!.

In the second experiment, the photographic windows w
replaced by pictures of letters of the same size, see Figs.~a!
and 1~b!. Quite astonishingly, on this set of pictures, t
holograph failed to achieve a comparable performance~see
Figs. 2 and 3, curves labeled bya). The recognition rater
was found to fluctuate heavily, with a median now lying
0.6.

V. NOISE ENHANCES ARTIFICIAL IMAGES
PERFORMANCE

A natural assumption is that if the asymmetry index
artificial pictures can be reduced, this will improve the ho
graph performance. To achieve this, we added noise at

TABLE I. Asymmetry index A5u( i
nSi /( i

nl i u, from natural,
noise-free, and noisy artificial images.

A
Pattern Natural Artificial

No. s l
250 s l

250.1

1 0.94 0.92 0.56
2 0.81 0.91 0.57
3 0.39 0.91 0.60
4 0.60 0.91 0.55
5 0.28 0.91 0.56
6 0.58 0.91 0.56
7 0.54 0.91 0.56
8 0.59 0.91 0.57
9 0.19 0.91 0.57

10 0.73 0.91 0.56
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eral stages of the process. When noise is addedbeforepro-
cessing the input patterns@Fig. 1~b!#, this drastically
improves the holograph performance, see Figs. 2 an
~curvesc and d). In these cases, the median ofr increased
from initially 0.5 to 0.75, where in some samples even
perfect recognition rate of 1 was observed. When also no
is added during recall, this has little effect. The immun
towards small additive noise in the recall step is found
increase with the lengthm of the response vector. Whe
noise is added exclusively during recall, the average rec
nition rate increases only slightly. To understand these effe
in detail, the recognition rates were explored for noise ad
during the learning~noise variancess l

2) and during recall
~noise variancess r

2). From the numerical evaluations w
generated a plot of the recognition rate over the param
spaces l

23s r
25@0,0.5#3@0,0.5#, using a resolution ofd

50.05 ands59 association pairs. At the upper bound of t
interval, letters are hardly recognizable by the eye. To k
the computation time on an affordable level, the outp
vector length was held fixed atm55. For every combination
of s l

2 and s r
2 , 32 experiments comprisingn530 training

epochs were performed, and the averaged recognition rar
was calculated as a function ofs l

2 ,s r
2 and training epoch

P$1, . . . ,n%. The results indicate that the best asympto
performance is obtained from a combination ofs l

250.1 with
s r

250.05 @Fig. 4~a!#. This is the amount of noise used fo

FIG. 2. Transient behavior of the recognition rater when images
are associated with random output vectors of lengthm540. Curves
a–d: artificial images, gliding averages forl50.2. Noise combi-
nations (s l

2 ,s r
2) as follows:a, ~0, 0!; b, ~0, 0.05!; c, ~0.1, 0.05!; d,

~0.1, 0!. Curven: natural images, where noise is added only duri
recall (s r

250.05). Dashed curve: gliding average forl50.2.

FIG. 3. Recognition rate histograms corresponding to Fig.
based on 1000 training epochs.
8-3
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a

FIG. 4. ~Color! Gray-level letter association to random output vectors of lengthm55, based on 30 training epochs:~a! Average

recognition rate as a function ofs l
2 and s r

2 . Optimal combination: (s l
2 ,s r

2)5(0.1,0.05). ~b! Average recognition rate evolution, as
function of s l

2 ~keepings r
250.05 fixed!.
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Figs. 2 and 3. Figure 4~b! shows how this performance en
hancement is acquired during learning. In Fig. 4~c!, sections
through Fig. 4~a! along the axess l

250.1 ands r
250.05, re-

spectively, are reported. The peaks at a nonzero leve
noise are clearly visible. By performing analogous exha
tive experiments, the dependence ofr on m was investigated.
In Fig. 5, the sections using values ofm51, 10, 20 evidence
that the higher the choice ofm, the better the performance. I
our experiments, random-generated desired response pa
were used. Further investigations have shown that a bad
sponse vector choice can introduce effects that are of
order of the influence of the noise.

VI. DISCUSSION

How are these findings related with the known princip
of stochastic resonance? As was mentioned above, the
sical examples of stochastic resonance are connected
~mostly periodic! subthreshold oscillations. Our investig
tions will show that the reported effect does neither belong
this class nor to the class of noise-enhanced pattern reco
tion methods that are based on quantization improvem
@19#.

To investigate its nature, the origins of the problem w
artificial pictures need to be analyzed. Holographic proce
ing is based on a summation of column vectors in the co
plex domain. It can be observed that during the iterat
formation of the holograph, single elements can display~1!
convergent,~2! limit cycle ~only possible for repeated non
random sequential learning!, or ~3! chaotic behavior~for the
verification of this property, time series methods were u
@18#!. An efficient holograph is characterized by a conv
gent correlation matrix~which will provide the stability of
the procedure! and a decent representation of the informat
06191
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FIG. 5. Dependence of the recognition rater on m, for ~curvea)
m520, ~curveb) m510, ~curvec) m51, ~a! as a function ofs l

2 ,
keepings r

250.05 fixed,~b! as a function ofs r
2 , keepings l

250.1
fixed. With growingm, the performance increases.
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STOCHASTIC RESONANCE IN PATTERN RECOGNITION . . . PHYSICAL REVIEW E67, 061918 ~2003!
to be processed. The latter is the key issue in understan
the mechanism of stochastic resonance that we deal wit

For the following, we will maintain for generality the
moduli in the complex representations. For simplicity, w
will assume that the response vectors be one dimensi
@12#. After the encoding using different stimuli at timest, the
correlation matrix has the form

X5H (
t51, . . . ,T

l 1,tg te
I (f t2u1,t), . . . ,

(
t51, . . . ,T

l n,tg te
I (f t2un,t)J , ~3!

wheren is the number of elements of the stimulus field e
coded as$ l i ,te

Iu i ,t% i 51, . . . ,n , and$g te
If t% is the response vec

tor. From a new stimulusS* , the response

R51/c (
t51, . . . ,T

g te
If t (

k51, . . . ,n
l k* l k,te

I (uk* 2uk,t)

5..1/c~L1eIf1* 1L2eIf2* 1••• ! ~4!

is generated, whereLi ,i 51, . . . ,T, are confidence levels
proportional to the degree to which the new stimulus fa
close to a stimulus previously encoded at timet:

Lte
If t* 5g te

If t (
k51, . . . ,n

l k* l k,te
I (uk* 2uk,t) ~5!

5g te
If t* F S (

k51, . . . ,n
l k* l k,tcos~uk* 2uk,t! D 2

1S (
k51, . . . ,n

l k* l k,tsin~uk* 2uk,t! D 2G1/2

, ~6!

wherel k* , uk* are the input data characteristics,l k,t , uk,t are
the previously recorded input data, and

f t* 5arctanF (
k51, . . . ,n

l k* l k,tsin~uk* 2uk,t1f t!/

(
k51, . . . ,n

l k* l k,tcos~uk* 2uk,t1f t!G .
The above expression shows that the largest contribu
comes from the closest stimulus in the past. The more e
distributed each of the input vector sets are, the higher
discrimination@12#.

Artificial pictures tend to generate stimulus vectors th
lack equidistribution, as they contain large areas of ident
elements. Moreover, these regions may coincide through
the set of stimuli~for example, all letter backgrounds a
white!. Let us take two stimulis1, s2 and call a learning
trial whens1 is first encoded ands2 is decoded, and later th
same procedure with interchanged roles ofs1, s2 is applied.
If the two stimuli are different, by the learning trial a n
contribution
06191
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2 D2 sinS uk,12uk,2

2 D ~7!

adds to the correlation matrix element@12#, which drives the
two responses mutually away from their response avera
For stimuli that are identical over a stimulus subfield, t
contributions cancel, so that the generated response
verges to the average of the responses. Although the i
vidual magnitudes of the elements over these fields are
tenuated in this way, a large number of such eleme
nevertheless, may mask the salient stimulus features
confound the recognition process. If noise is added, forme
identical pieces become different. This, however, only wo
if the information content of the different stimuli is not com
pletely destroyed.

The degree of equidistribution of a field can be expres
by the asymmetry index, defined as the average comp
vector length over the field. As in our numerical calculation
the moduli are set equal to 1, the maximal asymmetry ind
is 1, whereas a fully symmetric, i.e., optimal, stimulus fie
yields zero asymmetry. Starting from large asymmetri
upon addition of noise, we were able to arrive below t
critical asymmetryA0 ~see Table I!. This enhanced holo-
graphic pattern recognition substantially, however, witho
attaining the performance of natural images. The explana
of this fact is that artificial images contain less informati
than natural images, especially, if the spatial distribution a
is taken into account. As a consequence, in
source~image!-channel~encoding!-receiver~holograph! pic-
ture of the holograph, the entropy of the source is smal
for artificial images. Adding noise to the source makes
received information unreliable, decreasing the mutual inf
mation on which the holographs’ learning is based. In or
to achieve optimal performance, an encoding of high sy
metry ~which can be achieved by the addition of noise! and
relatively intact image structures are required. These requ
ments, however, are contradictory. This, ultimately, is t
origin of the reported stochastic resonance effect.

As a consequence, the nature of the effect that we d
with is distinct from the previously found stochastic res
nance principles in the field~e.g., noise-induced learning en
hancement, as encountered in simulated annealing@20#, or
recently found stochastic resonance in associative mem
approaches@22#!. Rather, its appearance is strongly tied
the representation of the neuron by means of complex n
bers, involving intrinsically notions of modulus and phas
@24#. This, notably, is the case in the field of hearing a
speech recognition, where it was observed that Gaus
noise added on the peripheral level enhances discrimina
in hearing@21,23#, forming a class of stochastic resonan
effects of their own.

As symmetric encoding can be established by the inc
sion of higher orders of correlations@12#, we speculate tha
in biology, stochastic resonance will be beneficial in con
tions where the sensors are too simple to provide high
order correlations. Presently, we are investigating rela
questions.
8-5



R

s.

eo

. E

F.

n-

ive
ntial
ion-
s
tant
ler,

STOOPet al. PHYSICAL REVIEW E 67, 061918 ~2003!
@1# R. Benzi, S. Sutera, and A. Vulpiani, J. Phys. A14, L453
~1981!.

@2# S. Fauve and F. Heslot, Phys. Lett.97A, 5 ~1983!.
@3# K. Wiesenfeld and B. McNamara, Phys. Rev. Lett.55, 13

~1985!.
@4# B. Derighetti, M. Ravani, R. Stoop, P.F. Meier, E. Brun, and

Badii, Phys. Rev. Lett.55, 1746~1985!.
@5# B. McNamara, K. Wiesenfeld, and R. Roy, Phys. Rev. Lett.60,

2626 ~1988!.
@6# L. Gammaitoni, M. Martinelli, L. Pardi, and S. Santucci, Phy

Rev. Lett.67, 1799~1991!.
@7# A. Bulsara, E. Jacobs, T. Zhou, F. Moss, and L. Kiss, J. Th

Biol. 152, 531 ~1991!.
@8# M. Dykman, T. Horita, and J. Ross, J. Chem. Phys.103, 966

~1995!.
@9# K. Wiesenfeld and F. Moss, Nature~London! 373, 33 ~1995!.

@10# S. Bahar, A. Neiman, L.A. Wilkens, and F. Moss, Phys. Rev
65, 050901~2002!.

@11# J.G. Sutherland, Int. J. Neural Syst.1, 259 ~1990!.
@12# J.G. Sutherland, inFuzzy, Holographic and Parallel Intelli-

gence, edited by B. Sucek~Wiley, New York, 1992!, pp. 7–92.
@13# J.I. Khan, Ph.D. thesis, University of Hawaii, 1995.
@14# J.I. Khan, IEEE Trans. Neural Netw.9, 389 ~1998!.
06191
.

r.

@15# D. Psaltis, D. Brady, X.G. Gu, and S. Lin, Nature~London!
343, 325 ~1990!.

@16# H.-Y.S. Li, Y. Qiao, and D. Psaltis, Appl. Opt.26, 5026~1993!.
@17# A. Pu, R. Denkewalter, and D. Psaltis, Opt. Eng.10, 2737

~1997!.
@18# J. Peinke, J. Parisi, O.E. Roessler, and R. Stoop,Encounter

with Chaos~Springer, Berlin, 1992!.
@19# E. Simonotto, M. Riani, C. Seife, M. Roberts, J. Twitty, and

Moss, Phys. Rev. Lett.78, 1186~1997!.
@20# B. Müller, J. Reinhardt, and M.T. Strickland,Neural Networks

~Springer, Berlin, 1995!.
@21# R.P. Morse and E.F. Evans, Nat. Med.2, 928 ~1996!.
@22# Z. Tan and M. Ali, Int. J. Mod. Phys. C11, 1585~2001!.
@23# M.T. Moskowitz and B.W. Dickinson, Proceedings of the I

ternational Symposium on Circuits and Systems, 2002~unpub-
lished!, pp. 855–858.

@24# Originally @12#, holographic neurons emerged as an alternat
model of biological neurons, where phases play an esse
role ~in contrast to the usual approach where phase relat
ships are neglected!. Recent findings from biological neuron
indicate that phase relationships may indeed be more impor
than previously expected. See, e.g., R. Stoop, K. Schind
and L.A. Bunimovich, Neurosci. Res.36, 81 ~2000!.
8-6


