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Abstract— We present a spike-based saccadic recognition sys-
tem that uses a temporal-derivative silicon retina on a pan-tilt
unit and an aVLSI multi-neuron classifier with a time-to-first-
spike output coding. By using the spike information during the
last 150 ms of a saccadic movement, we generate a reliable, sparse
stimulus representation of image patches. We describe a novel
classification scheme where the retinal spikes during this time
influence the time-to-first spike of classifier neurons which receive
the same constant input current. The preferred pattern of the
neuron is stored in the synaptic connectivity between the retina
and the classifier neuron. We demonstrate the robustness and
real-time performance of this recognition scheme on a saccadic
system which uses analog VLSI components.

I. INTRODUCTION

Artificial neural architectures can benefit from the consid-
eration of the properties of a specific stimulus representation.
Here we describe a spike-based saccadic recognition system
that uses a stimulus representation based on the information
in the spikes from a retina at the end of a saccade. Saccades
are fast eye movements that shift the fovea to a new image
location. We use the information contained in the spikes
towards the end of a saccade to generate a reliable and
sparse stimulus representation that is largely independent of
the magnitude of the saccade.

Next, we design a classifier that is suitable for recognizing
this type of stimulus representation. We use single neurons
that are held in reset during a saccade and then receive spiking
input from the retinal pixels towards the end of the saccade.
The retina input modulates a constant input current to all
neurons. By using a time-to-first-spike coding, a winner-take-
all circuit then easily detects the neuron with the strongest
input. This classifier is robust with respect to the number
of spikes received and reaches its decision in a time that
corresponds to the end of the saccade.

We implemented this system in mixed-signal hardware
using analog VLSI technology and an asynchronous event-
based communication protocol, so that we can demonstrate
the speed and robustness of a system that uses asynchronous
signalling and components with mismatch (that is, the neurons
and synapses). The core components are a temporal-derivative
retina chip that encodes temporal contrast changes in spike
output [1], and a multi-neuron chip which contains the neurons
of the classifier [3]. Spikes are transmitted between the two
chips using an asynchronous, event-based real-time commu-
nication protocol (address-event representation, AER), imple-
mented by a framework of digital AER components [2]. The
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synaptic connectivity is implemented through a programmable
connection table. A software framework monitors spikes,
programs the connection table, and controls the movements
of a pan-tilt unit to generate saccades. The framework for the
hardware and software has been described in [5]. The retina
chip has a resolution of 64x64 pixels, the multi-neuron chip
has 256 neurons with eight synaptic types per neuron. The
maximum spike bandwidth between chips is 1.2 MSpikes/s
and the transmission spike latency is 2 us.

The overview of the system is described in Fig. 1. A
software control unit generates the required movement com-
mands for the pan-tilt unit to perform a saccade. At the
same time it resets all the classifier neurons by stimulating
a global inhibitory neuron and suppressing inputs from the
retina. Shortly before the end of the saccade, suppression is
released and spikes from the retina stimulate the classifier
neurons through the synaptic connection table.
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Fig. 1. Setup overview. The temporal-derivative retina (R) is mounted on a
pan-tilt unit (PTU). Its output is directed through saccadic suppression (SS)
and a connection table (CT) to the classifier chip (CL). Retina and classifier
chips are implemented in analog VLSI technology while spikes are transmitted
through a real-time digital hardware framework. The operation of software
control unit (C), and the role of the global inhibitory neuron (GI) are described
in the text.

Although the framework allows online learning and chang-
ing the connectivity table dynamically, we do not use this
capability in the present work. We focus on the properties
of the stimulus representation at the end of the saccade and
the classifier network. To demonstrate the performance of the
classifier, we compute the synaptic connectivity necessary for
recognizing patches from a test image.

II. SACCADES

The human eye uses saccades to shift its foveal vision to
objects of interest. We make a simplified model of a saccadic
system by mounting the retina chip onto a pan-tilt unit with
two stepper motors. The motors are aligned so that the two
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Fig. 2. Saccadic stimulus representation: (a) Effect of different time window
lengths: retina spikes are only counted during a time window at the end of
the saccade. The number below each figure indicates the time before the end
of the saccade, when the suppression is released. Actual window times are
slightly larger due to delays when transmitting the start command, as can be
seen by the presence of few spikes for a window length of Oms. (b) Effect of
different saccade magnitudes: saccades were performed over different angular
distances, from a starting point 45° up and to the left over the indicated angular
distance to the center. (c¢) Effect of different directions: saccades were made
in steps of 45° from an angular distance of 7.3° visual angle. The resulting
spike count images are shown in the direction from which the saccade was
made. The original image is shown in the center. Different directions show
slightly different results, e.g. the vertical strand of hair is not visible during
a vertical saccade.

axes of rotation intersect, resulting in pitch and yaw rotation.
The center of the retina is mounted as close as possible
perpendicular to these axes to reduce translational movements.
The accelerations of the movements are adjusted so that the
center of view of the retina moves in a straight line.

Although our pan-tilt unit can reach moderate speeds up
to 150°/s (human saccades can reach up to 900°/s with
a smooth velocity profile [7]), we discovered that smooth
acceleration and deceleration are necessary to avoid vibrations
of the platform. The retina moves in a straight line from the
starting point of a saccade to the target location.

We use the retina in a foveal configuration by mount-
ing a long lens (12mm focal length) that projects a visual
field of 9.5°x9.5° onto the 64x64 pixels of the chip. The
512x512 ’Lenna’ image covered 45° of visual angle at a
distance of 19cm.

It is generally assumed that the biological retina output is
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Fig. 3. Time-to-first spike gives the identity of the winning classifier neuron.
The top line shows the raster plot of spikes from the retina (R) to the classifier
neurons. The second line shows the raster plot of spikes to the inhibitory
neuron during the saccadic suppression (SS), thus resetting all classifier
neurons during this time. Every dot corresponds to a spike. As soon as the
suppression is released, the membrane voltage, Vimem of every classifier
neuron is charged by a constant input current until it reaches threshold (1). If
a neuron receives more excitation or inhibition as input from the retina during
this time, it will reach threshold earlier (2) or later (3) respectively.

suppressed in the lateral geniculate nucleus during a saccade,
see e.g. [8] for a review. We do the same, but release the
suppression before the end of the saccade, and we use the
spike information available towards the end of the saccade. In
this time window, a retina pixel is only stimulated by edges
at the target position of the saccade. A count of spikes in the
time window at the end of the saccade gives an image of the
target. The number of spikes per pixel determines the contrast
of an edge.

We adjusted the length of the time window until we found a
clear image (Fig. 2a). This output represents a qualitative op-
timum between the number of spikes obtained and a smearing
of the image.The optimum window length is 150ms which is
15% of of the duration of an average saccade.

We confirmed that the saccade mechanism described here
produces a reliable stimulus that is only dependent on the
image at the target location, and not on the distance or
direction of the saccade (Figs. 2b and c). We do not claim
that this stimulus representation is used in a biological system.
In our system, a retinal pixel is responsive to changes in
illumination with frequencies up to the kHz range and a typical
saccade lasts about 1s. In the human eye, a cone is responsive
to frequencies up to 55Hz and a saccade lasts in the range of
tens of milliseconds [7].

III. TIME-TO-FIRST-SPIKE CLASSIFIER

Using the retina spikes during a saccade as the input to
a classifier means the classifier should have the following
properties:
« it should integrate only over a time window at the end of
the saccade before it makes a decision.
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« the decision should not depend on the total number of
spikes from the retina.

We fulfill these requirements by using a classifier where
the retina spikes at the end of the saccade excite or inhibit
classifier neurons that are all driven by a constant input current.

The classifier consists of an array of excitatory integrate-
and-fire neurons and one global inhibitory neuron. Each exci-
tatory neuron represents a stimulus class (Fig. 1). The global
inhibitory neuron receives excitation from every array neuron
and in turn inhibits all excitatory neurons. The excitatory
neurons receive excitatory or inhibitory synaptic connections
from the retina pixels. These connections are implemented
using the spike-based connection table, which allows any
arbitrary connectivity.

During a saccade, classifier excitatory neurons do not re-
ceive output spikes from the retina. The neurons are held
instead at their reset potential by stimulating the global
inhibitory neuron with a high frequency. As soon as the
suppression is released, the inhibition stops, and a constant
input current starts charging up the excitatory neurons (Fig. 3).
If a neuron receives more excitation than inhibition, it will
spike earlier than neurons receiving no retina input. The output
of the classifier is determined by a time-to-first-spike code
after the end of the saccade since the neuron receiving the
most excitation will spike first.

It is easy to combine this time-to-first-spike code with the
hard winner-take-all circuit discussed in [4]: as soon as the
winning first neuron spikes, it excites the global inhibitory neu-
ron, which discharges all neurons to their resting potential V.
The winner itself is reset to its reset potential Vx. Since we
set Vp > Vp, and all neurons receive the same constant input
current, the winner will continue to spike and will be the only
spiking neuron in the classifier array.

The time-to-first-spike code allows the use of additional
signals for setting up the classifier. For example, one of the
neurons can be used as a reference neuron in that it is only
charged by a constant current and receives no retina spikes.
It will then spike at a fixed, but adjustable delay after the
reset. We can use the output of this reference neuron to
tune the classifier neurons: they should be biased so that no
classifier neuron spikes before the end of the saccade. We then
implement the following biasing rule: if the winning neuron
spikes before the reference neuron whose delay is timed to
the end of the saccade, the total amount of the excitation is
decreased. If the winning neuron spikes only slightly after the
reference neuron, the total amount of excitation is increased.

IV. EXPERIMENTS

We tested whether the spike-based saccadic system can rec-
ognize patches on the 'Lenna’ image (Fig. 4). All experiments
were done under normal office lighting conditions.

We manually selected nine target points of saccades (crosses
in Fig. 4(a)) in the image which correspond to high-salient
points for an observer. From another nine randomly selected
start points (circles in Fig. 4(a)), we performed saccades from
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Fig. 4. Experimental procedure. (a) We manually selected 9 points as target
points for the saccades (red crosses). For training, we recorded the retina
spikes during the saccades that started from each of 9 randomly selected
start points (blue circles) to each of the target points. (b) The figures show
the spike averages for the 9 patches. (c) The most relevant pixels (see text)
were connected either to excitatory or inhibitory synapses of the classifier
neurons (white-excitatory, black-inhibitory). Classification performance was
determined by response of classifier neurons during the saccades from 9
random starting points (green diamonds in (a)).
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Fig. 5. Hit matrix quantifying the classification performance. There were
nine trials from randomly selected start points to each patch. The classifier
recognized 92.6% of the patches correctly (entries on the diagonal).

each of these start points to every target point. The recorded
spikes from the retina during the saccades served as a training
set.

The training samples were averaged to obtain a class repre-
sentation of every target point (Fig. 4(b)). For each class, the
pixels were categorized as excitatory or inhibitory, depending
on whether the spike count of the pixel was larger or smaller
than the average pixel count over all classes. We then sorted
the pixels by their variance across the classes. Since only
binary synaptic efficacies were available, we had to normalize
the input to the neurons by assigning the same number of
excitatory and inhibitory connections to each neuron. We used
the same number of connections that the class with the lowest
number of connections received, which turned out to be 1365
(out of the 4096 retinal pixels) in these experiments. These
excitatory and inhibitory connections were programmed into
the connection table (shown in Fig. 4(c)).

To test the performance of the system, we selected 9 addi-
tional random start points (diamonds in Fig. 4) and recorded
the response of the classifier for saccades from every start point
to every target point. From the hit matrix shown in Fig. 5, we
computed the performance of the classifier. In 92.6% of the
81 trials, the patch was correctly classified (chance level for
9 classes: 11.1%), which is equivalent to a mutual information
of 2.83 bit (stimulus entropy for the 9 patches: 3.17 bit).

V. DISCUSSION

We presented a spike-based saccadic recognition system that
uses the information contained in the spikes of a temporal
contrast spike-based retina at the end of a saccade for recog-
nition of patches on a test image. Recognition takes place in
real-time; the system uses only as many neurons as classes
(or patches); and the classifier output is determined in one
spike. We also discussed a new form of temporal stimulus
representation, consisting of retina spikes in the last 150 ms
of the saccade. The classifier based on a time-to-first-spike
code is robust and provides a recognition rate of 92.6% for
the 9 patches in this experiment.

VI. ACKNOWLEDGMENTS

We acknowledge Vittorio Dante and Paolo Del Giudice
(Instituto Superiore di Sanita, Rome, Italy) for the original
design of the PCI-AER board. We also acknowledge Adrian
Whatley, Gerd Dietrich and the other members of the Institute
of Neuroinformatics involved in the development of the PCI-
AER board, of its drivers, and software library components.
This work was supported by the IST grant IST-2001-34124.

REFERENCES

[1] P. Lichtsteiner and T. Delbriick, “64x64 event-driven logarithmic tempo-
ral derivative silicon retina,” in Proceedings of the 2005 IEEE Workshop
on Charge-Coupled Devices and Advanced Imager Sensors, June 2005,
Nagao Prefecture, Japan, 9-11 June.

[2] V. Dante, P. Del Guidice, and A. M. Whatley, “Hardware and software
for interfacing to address-event based neuromorphic systems,” in The
Neuromorphic Engineer, vol. 2, no. 1, 2005, pp. 5-6.

[3] S.-C. Liu and M. Oster, “Feature competition in a spike-based winner-
take-all VLSI network,” in Proceedings of the 2006 IEEE International
Symposium on Circuits and Systems, May 2006, pp. 3634-3637.

[4] M. Oster and S.-C. Liu, “Spiking inputs to a winner-take-all network,”
in Advances in Neural Information Processing Systems, Y. Weiss,
B. Scholkopf, and J. Platt, Eds.,Cambridge, MA: MIT Press, 2006,
vol. 18, pp. 1051-1058.

[5] M. Oster, A. M. Whatley, S.-C. Liu, and R. J. Douglas, “A hard-
ware/software framework for real-time spiking systems,” in Interna-
tional Conference on Artificial Neural Networks (ICANN), W. Duch,
J. Kacprzyk, and E. Oja, Eds. Warsaw, Poland: Springer Lecture Notes,
Sep 2005, vol. 3696, pp. 161-166.

[6] S. Thorpe, R. Guyonneau, N. Guilbaud, J. Allegraud, and R. VanRullen,
“Spikenet: real-time visual processing with one spike per neuron,”
Neurocomputing, vol. 58-60, pp. 857-864, 2004.

[71 E. R. Kandel, J. Schwartz, and T. M. Jessell, Principles of Neural
Science, Mc Graw Hill, 2000, pp. 510, 784-786.

[8] J. Ross, D. Burr, and M. C., “Suppression of the magnocellular pathway
during saccades,” Behavioural Brain Research, vol. 80(1-2), pp. 1-8,
1996.

3086



