
The Linux driver for the Rome PCI-AER board
Adrian M. Whatley, Institute of Neuroinformatics, University & ETH Zurich

Specification version 2.16 (4.1.2012) 2.17 (6.9.2012) for driver versions >= 2.45 2.46

Previous specification versions:
 2.16 4.1.2012

2.15 22.12.2011
2.14 28.9.2010
2.13 5.7.2010
2.12 1.4.2010
2.11 25.3.2010
2.10 4.2.2009
2.9 21.10.2008
2.8 20.3.2007
2.7 17.1.2006
2.6 12.7.2005
2.5 25.5.2005
2.4 15.4.2004
2.3 19.1.2004
2.2 3.7.2003
2.1 26.5.2003
2.0 9.5.2003

unnumbered 9.8.2000

General

The Linux 2.6.x/3.2.x driver for the PCI-AER board [1] is contained in an installable module called pciaer.ko. It
supports (subject to the alteration of a compile time constant) up to four PCI-AER boards in one machine. The
logically separate functions of the Mapper, Monitor and Sequencer are supported by three minor devices for each
board, together with an additional minor device reserved for accessing the PCI interface configuration NVRAM [2].
The separation of Mapper, Monitor, and Sequencer has the advantage of giving the desired degree of granularity of
control and leaves open the possibility of configuring the Mapper via a human-readable read/write call interface in
addition to via its ioctl interface, and in addition to the read and write calls necessary to support the Monitor and
Sequencer.

The minor device for accessing the PCI interface configuration NVRAM is intended only as a convenience for the
hardware developer, and is not intended for use by the end user.

In each of the descriptions of the minor devices that follow, there are entries for most of the possible file operations
which are relevant to character device drivers. The exceptions are fasync, aio_read, aio_write, and
aio_fsync which are not supported since asynchronous operations are not supported, flush and
check_flags. All ioctl calls are handled via unlocked_ioctl.

Unless otherwise described below, the state of the hardware is preserved across open and close calls on the
Mapper, Monitor and Sequencer devices, such that connected AER systems continue to function without
interruption.

A header file pciaer.h contains definitions of the constants (e.g. ioctl numbers) and structures described in this
document.

Inserting the Driver into the Kernel

Both dynamic and static major number allocation will be supported. In the former, default case, the driver can be
inserted using insmod or modprobe without specifying any load-time parameters. The kernel will pick a free major
number and use that. The user can then determine which number has been selected by examining /proc/devices and
can create the corresponding device nodes appropriately. This can of course be automated, see for example the
script in [3]. Alternatively, the device nodes can be created first, and the major number chosen by the user can be
supplied to the driver as a load-time parameter on the insmod command line or in the modprobe.conf file, e.g.:

insmod pciaer.o major=60

1

http://www.ini.unizh.ch/~amw/
file:///home/amw/pciaer/pciaer.git/driver/driver_spec.v2-3.doc
file:///home/amw/pciaer/pciaer.git/driver/driver_spec.v2-3.doc
file:///home/amw/pciaer/pciaer.git/driver/driver_spec.v2-3.doc
file:///home/amw/pciaer/pciaer.git/driver/driver_spec.v2-3.doc
file:///home/amw/pciaer/pciaer.git/driver/driver_spec.v2-3.doc
file:///home/amw/pciaer/pciaer.git/driver/driver_spec.v2-3.doc
file:///home/amw/pciaer/pciaer.git/driver/driver_spec.v2-3.doc

The driver will only accept major numbers supplied in this way which are in one of the ranges listed in [4] as
allocated for local/experimental use, namely 60-63, 120-127 and 240-254, all inclusive.

The Device Filesystem devfs, in which a device driver causes entry points in /dev to be created and removed
automatically at driver initialization and removal times respectively, will not be supported.

Users should use the make install target to install the driver into the correct kernel module extra directory and then
run /sbin/modprobe pciaer to insert the driver into the kernel and /sbin/modprobe -r pciaer to remove it. The major
number will then be supplied on the command line automatically according to the entry made in the
modprobe.conf.local file during installation.

The module is marked as being GPL'd, but SuSE kernels may still complain about being 'tainted' when the module
is inserted because the module is not supported by SuSE.

Module parameters

The available module parameters are described in the following table.

Name Type Default Function

major uint 0 If non-zero, this sets the major number used by the driver, see
above.

allow_mmap_write bool false If true, permit programs to use mprotect to gain write access
to the Mapper SRAM when it has previously been mmap'ed read-
only. This should only be used for hardware debugging purposes,
as the integrity of the mapping tables can no longer be
guaranteed.

nvr_only bool false If true, the driver only attempts to make the PCI interface
configuration NVRAM minor device usable. This is useful on
boards which have not yet been configured, or which have lost
their configuration such that the driver cannot be loaded
normally.

no_sample_random bool false If true, the timing of interrupts from the PCI-AER card will not
be allowed to contribute to the entropy pool used to generate
random numbers. This might be important if very regular
address-event senders and receivers are in use (e.g. during test)
but it is still important that random-number generation be of high
quality.

abort_init_at uint 0 Setting this non-zero can be used to abort the driver initialization
process for debugging purposes at the point defined by an
instance in the source of the ABORT_INIT_POINT macro. Only
available if CONFIG_PCIAER_DEBUG is defined.

fifos charp NULL fifos can be used to tell the driver that one or more of the
FIFOs fitted to the boards present are not the same size as the
PCI memory region for reading and writing the monitor and
sequencer FIFOs respectively. The parameter string takes the
form

 [board.]func:d[,[board.]func:d[,...]]

where board is the board number, func is one of mon, seq or
map and d is either one of the possible FIFO part designations
e.g. IDT7203 or depths e.g. 2048, or 2K. If the board. element
is not present, the first board is assumed. In the case of the
monitor and sequencer FIFOs, the size given by the fifos string is
not allowed to be bigger than the size of the corresponding PCI
memory region.

When the module is inserted into the kernel, the module parameters are readable from files in
/sys/module/pciaer/parameters/.

2

file:///home/amw/pciaer/pciaer.git/driver/driver_spec.v2-3.doc

Minor device numbers and device node naming

Minor devices are numbered and named as follows:

 0 = /dev/aernvr0 First PCI-AER board config NVRAM
 1 = /dev/aermap0 First PCI-AER board Mapper
 2 = /dev/aermon0 First PCI-AER board Monitor
 3 = /dev/aerseq0 First PCI-AER board Sequencer
 4 = /dev/aernvr1 Second PCI-AER board config NVRAM
 5 = /dev/aermap1 Second PCI-AER board Mapper
 6 = /dev/aermon1 Second PCI-AER board Monitor
 7 = /dev/aerseq1 Second PCI-AER board Sequencer
 8 = /dev/aernvr2 Third PCI-AER board config NVRAM
 9 = /dev/aermap2 Third PCI-AER board Mapper
10 = /dev/aermon2 Third PCI-AER board Monitor
11 = /dev/aerseq2 Third PCI-AER board Sequencer
12 = /dev/aernvr3 Fourth PCI-AER board config NVRAM
13 = /dev/aermap3 Fourth PCI-AER board Mapper
14 = /dev/aermon3 Fourth PCI-AER board Monitor
15 = /dev/aerseq3 Fourth PCI-AER board Sequencer

The permissions on the aernvr* device nodes should be set such that only root can write to the PCI interface
configuration NVRAM, otherwise it might become possible for non-root users to write boot ROM code into the
NVRAM and take complete control of the PC at next boot. (Writing to the NVRAM is however further protected by
checking for the capability CAP_SYS_ADMIN.)

3

Monitor minor device

This minor device is used to read from the monitor FIFO and control other aspects of the hardware related to the
Monitor.

open

The Monitor device can be opened as many times as desired provided that it is opened with the same effective user
ID (euid) and that neither Sequencer nor Mapper have been opened with a different euid. Attempting to open it with
a different euid will fail, with errno being set to EBUSY. Otherwise no special action is taken on opening the
device, since the Monitor is always enabled to prevent sending devices (chips) from hanging waiting for a request to
be acknowledged. Note that when the Monitor device is opened, the Monitor FIFO may contain stale, possibly very
stale data. Applications must call the PCIAER_IOC_RST_MON_FIFO ioctl call if they want to be sure of reading
recent data. The open may block (even when O_NONBLOCK is specified), but only in low memory situations.

release

On release, no special action is taken, since the Monitor is always enabled to prevent sending devices (chips) from
hanging waiting for a request to be acknowledged. The Monitor FIFO will continue to be filled by incoming
address-events.

llseek

Seeking makes no sense for the Monitor, so all attempts to seek on the device are failed, and errno is set to
ESPIPE.

read

The 32-bit data words read from are formatted as follows (see Table 1 in [1]):

Value of (data_word &
MONITOR_DWORD_TYPE_MASK)

Meaning of (data_word &
MONITOR_DWORD_DATA_MASK)

MONITOR_DWORD_AER_ADDR AE address value
MONITOR_DWORD_TIME_HI High order word of time at which AE occurred
MONITOR_DWORD_TIME_LO Low order word of time at which AE occurred
MONITOR_DWORD_ERROR Error code

Both blocking and non-blocking read will be supported. If the Monitor FIFO is empty, in the blocking case read
will block whereas in the non-blocking case the read will fail with errno set to EAGAIN. Otherwise, if the
Monitor FIFO is not empty, as many DWORDs as possible will be read from the FIFO and placed into the user's
buffer (i.e. until the FIFO becomes empty, or the end of the user's buffer is reached). In order to prevent possible
confusion about the meaning of the next byte read which could arise after reading a number of bytes not divisible
by four, the driver will never return a non-integral number of DWORDs. The return value is the number of bytes
read. There are no circumstances in which 0 (indicating end of file) can be returned, unless the caller specified that
zero bytes should be read. If greater than zero but less than four bytes are requested, the read will fail with errno
set to EINVAL.

For efficiency, applications should be prepared to read the preferred blocksize of data from the Monitor. This can be
determined by calling fstat (2) on the Monitor and examining the st_blksize member of the returned stat
structure. This field gives the "preferred" blocksize (in bytes) for reads, which is currently half of the FIFO depth in
DWORDS multiplied by the size of a DWORD,. Note that when time labels are enabled, each event requires three
FIFO words, so a FIFO with a depth of 64K could hold a maximum of 21845 complete time-stamped events.

Since the Monitor is a non-seekable device, the pread system call is failed with errno being set to ESPIPE.

write

Writing to the Monitor is meaningless and write will not be implemented. The kernel will return -EINVAL to the
calling program.

4

file:///home/amw/pciaer/pciaer.git/driver/driver_spec.v2-3.doc

poll

Whenever the Monitor FIFO is non-empty, poll will indicate that the device can be read without blocking. It will
always indicate that the device can be written without blocking, since write will always immediately return an
error.

mmap

There is nothing that can sensibly be mapped for the Monitor, so mmap will not be implemented. The kernel will
return -ENODEV to the calling program.

fsync

Will not be implemented since there can be no pending data to flush on the read-only Monitor device. The kernel
will return -EINVAL to the calling program.

unlocked_ioctl

The following ioctls are defined on the Monitor minor device:

FIONREAD

This standard ioctl (see man tty_ioctl) sets the int pointed to by its argument to the number of bytes
available for reading.

PCIAER_IOC_GET_VERSION_INFO
PCIAER_IOC_SET_CNTR_PERIOD
PCIAER_IOC_GET_CNTR_PERIOD
PCIAER_IOC_RST_CNTR_GET_TIME
PCIAER_IOC_GET_CNTR_LAST_RST_TIME
PCIAER_IOC_SET_ARB_CONFIG
PCIAER_IOC_GET_ARB_CONFIG
PCIAER_IOC_RST_FIFO
PCIAER_IOC_GET_PCI_INFO (deprecated)
PCIAER_IOC_GET_STATS (deprecated)
PCIAER_IOC_RST_STATS (deprecated)

These ioctls are described in the Common Ioctls section below.

PCIAER_IOC_SET_MON_CH_SEL
PCIAER_IOC_GET_MON_CH_SEL

These two ioctls deal with which channels are actually monitored. The ...SET... ioctl uses its argument directly to
specify a 4-bit mask containing a 1 for each channel which should be monitored, and a 0 for each channel which
should not be monitored. The ...GET... ioctl fills the int pointed to by its argument with such a bit mask according
to the current status. The ...SET... ioctl requires write access to the device; the ...GET... ioctl requires read access.

PCIAER_IOC_SET_MON_TIME_LBL_FLAG
PCIAER_IOC_GET_MON_TIME_LBL_FLAG

These two ioctls deal with the Monitor's Time Label flag. If the argument of the ...SET... ioctl is zero, time labels
will be disabled, otherwise they will be enabled. The ...GET... ioctl sets the int pointed to by its argument to 0 or
1 according to the current status of the flag. The ...SET... ioctl requires write access to the device; the ...GET... ioctl
requires read access.

5

file:///home/amw/pciaer/pciaer.git/driver/driver_spec.v2-3.doc

PCIAER_IOC_GET_MON_FIFO_FLAGS

Fills the int pointed to by its argument with a status word containing a positive logic copy of the Monitor FIFO
flag bits, i.e. some combination of the following defined flag bits: PCIAER_IOC_MON_EMPTY,
PCIAER_IOC_MON_HALF_FULL and PCIAER_IOC_MON_FULL, together with some other reserved bits. This
call can be used to determine whether a subsequent read call might be able to read a half or a full FIFO's worth of
data. Just how much that is depends on the depth of the FIFO. This ioctl requires read access to the device.

6

Sequencer minor device

This minor device is used to write to the Sequencer FIFO and control other aspects of the hardware related to the
Sequencer.

open

The Sequencer device can be opened as many times as desired provided that it is opened with the same effective
user ID (euid) and that neither Monitor nor Mapper have been opened with a different euid. Attempting to open it
with a different euid will fail, with errno being set to EBUSY. The Sequencer hardware is not enabled on open, but
only at the time of first write (to enable initial configuration via ioctls).

release

If the Sequencer FIFO is not empty release will block until the FIFO is empty or a signal is received. The Sequencer
hardware is then disabled.

llseek

Seeking makes no sense for the Sequencer, so all attempts to seek on the device are failed, and errno is set to
ESPIPE.

read

Reading from the Sequencer is meaningless and read will not be implemented. The kernel will return -EINVAL to
the calling program.

write

Data words to be written to the Sequencer FIFO should be formatted as follows (see Table 2 in [1]):

Value of (data_word &
SEQUENCER_DWORD_TYPE_MASK)

Meaning of (data_word &
SEQUENCER_DWORD_DATA_MASK)

SEQUENCER_DWORD_END_SEQUENCE None
SEQUENCER_DWORD_AER_ADDR AE address value
SEQUENCER_DWORD_DELAY Relative delay in units of the current AER Clock Period
SEQUENCER_DWORD_WAIT_TIME Absolute value of counter to wait for

The buffer to be written should be an integral number of DWORDs long, otherwise the write will fail with errno
set to EINVAL. This unconventional policy will be implemented in order to prevent the possible confusion in the
meaning of the next byte to be written which could arise after writing a number of bytes not divisible by four.

On first writing to the device, the Sequencer hardware is enabled.

Both blocking and non-blocking write will be supported. If the Sequencer FIFO is full, in the blocking case write
will block whereas in the non-blocking case the write will fail with errno set to EAGAIN. There are no
circumstances in which the error ENOSPC will be returned. If the Sequencer FIFO is not full, as many words as
possible will be written to the FIFO from the user's buffer (i.e. until the FIFO becomes full or the end of the user's
buffer is reached). If the O_SYNC file flag is set and O_NONBLOCK is not set, the write call will not return until all
of the words in the user's buffer have been written to the FIFO. The return value is the number of bytes written.

For efficiency, applications should write the preferred blocksize of data to the Sequencer. This can be determined by
calling fstat (2) on the Sequencer and examining the st_blksize member of the returned stat structure.
This field gives the "preferred" blocksize (in bytes) for writes, which is currently half of the FIFO depth in
DWORDS multiplied by the size of a DWORD,.Note that for the Seqencer FIFO each event typically requires two
words, a delay and an address, so a 64K deep Sequencer FIFO might hold only 32K events, but might hold slightly
more if not every event requires a delay, or slightly less if some back to back delays are required between events.

Since the Sequencer is a non-seekable device, the pwrite system call is failed with errno being set to ESPIPE.

7

file:///home/amw/pciaer/pciaer.git/driver/driver_spec.v2-3.doc

poll

Whenever the Sequencer FIFO is non-full, poll will indicate that the device can be written to without blocking. It
will always indicate that the device can be read without blocking, since read will always immediately return an
error.

mmap

There is nothing that can sensibly be mapped for the Sequencer, so mmap will not be implemented. The kernel will
return -ENODEV to the calling program.

fsync

If the Sequencer FIFO is not empty, fsync will block until it is empty.

unlocked_ioctl

The following ioctls are defined on the Sequencer minor device:

PCIAER_IOC_GET_VERSION_INFO
PCIAER_IOC_SET_CNTR_PERIOD
PCIAER_IOC_GET_CNTR_PERIOD
PCIAER_IOC_RST_CNTR_GET_TIME
PCIAER_IOC_GET_CNTR_LAST_RST_TIME
PCIAER_IOC_SET_SEQ_ARB_CHANNEL
PCIAER_IOC_GET_SEQ_ARB_CHANNEL
PCIAER_IOC_RST_FIFO
PCIAER_IOC_GET_PCI_INFO (deprecated)
PCIAER_IOC_GET_STATS (deprecated)
PCIAER_IOC_RST_STATS (deprecated)

These ioctls are described in the Common Ioctls section below.

PCIAER_IOC_GET_SEQ_FIFO_FLAGS

Fills the int pointed to by its argument with a positive logic copy of the Sequencer FIFO flag bits, i.e. some
combination of the following defined flag bits: PCIAER_IOC_SEQ_EMPTY, PCIAER_IOC_SEQ_HALF_FULL
and PCIAER_IOC_SEQ_FULL. This ioctl requires read access to the device.

8

Mapper minor device

This minor device is used to read and write the Mapper SRAM and to control other aspects of the hardware related
to the Mapper. The primary means of access to the Mapper SRAM is intended to be via an ioctl interface which
provides various commands for manipulating lists of address-event mappings. The Mapper SRAM can also be read
by using mmap to map it into user space, but reading from this memory will only produce valid results while
mapper output is disabled and the mapper is not busy (see the PCIAER_IOC_*_MAP_OUT* group of ioctls). This
is intended primarily for use in debugging, and direct write access is not permitted in order to guarantee the integrity
of the mapping tables. The file operations read and write are not implemented, but could in the future support a
basic human-readable command interface.

open

The Mapper device can be opened as many times as desired provided that it is opened with the same effective user
ID (euid) and that neither Monitor nor Sequencer have been opened with a different euid. Attempting to open it with
a different euid will fail, with errno being set to EBUSY. Otherwise no special action is taken on opening the
device, as the hardware is always enabled by default. The open will never block.

release

On release, no special action is taken, unless mapper output has been disabled using
PCIAER_IOC_DIS_MAP_OUT, in which case output is re-enabled.

llseek

Seeking makes no sense for the Mapper, so all attempts to seek on the device are failed, and errno is set to
ESPIPE.

read

Will not be implemented so the kernel will return -EINVAL to the calling program.

write

Will not be implemented so the kernel will return -EINVAL to the calling program.

poll

Will not be implemented.

mmap

Will map the hardware SRAM to user space with read-only access. If the module parameter allow_mmap_write
is set non-zero then the driver will permit programs to use mprotect to gain write access to the Mapper SRAM
when it has previously been mmap'ped read-only. This should only be used for hardware debugging purposes, as the
integrity of the mapping tables can no longer be guaranteed.

fsync

Will not be implemented so the kernel will return -EINVAL to the calling program.

9

unlocked_ioctl

PCIAER_IOC_GET_VERSION_INFO
PCIAER_IOC_SET_SEQ_ARB_CHANNEL
PCIAER_IOC_GET_SEQ_ARB_CHANNEL
PCIAER_IOC_SET_ARB_CONFIG
PCIAER_IOC_GET_ARB_CONFIG
PCIAER_IOC_RST_FIFO
PCIAER_IOC_GET_PCI_INFO (deprecated)
PCIAER_IOC_GET_STATS (deprecated)
PCIAER_IOC_RST_STATS (deprecated)

These ioctls are described in the Common Ioctls section below.

PCIAER_IOC_SET_MAP_CH_SEL
PCIAER_IOC_GET_MAP_CH_SEL

These two ioctls deal with which channels' input is actually processed by the mapper. The ...SET... ioctl uses its
argument directly to specify a 4-bit mask containing a 1 for each input channel which should be processed by the
mapper, and a 0 for each channel which should be ignored by the mapper. The ...GET... ioctl fills the int pointed
to by its argument with such a bit mask according to the current status. The ...SET... ioctl requires write access to
the device; the ...GET... ioctl requires read access.

PCIAER_IOC_SET_MAP_MAPPING
PCIAER_IOC_GET_MAP_MAPPING_COUNT
PCIAER_IOC_GET_MAP_MAPPING
PCIAER_IOC_MAP_ADD_TO_MAPPING
PCIAER_IOC_MAP_DEL_FROM_MAPPING

These five ioctls all use their argument to point to a pciaer_mapping structure

struct pciaer_mapping {
 unsigned short source_ae;
 unsigned short dest_count;
 unsigned short *dest_ae;
};

where dest_ae, when valid, points to an array of at least dest_count unsigned shorts, and all five cause
mapping output to be suspended for the duration of the call.

In the ...SET_MAP_MAPPING case, all fields must be valid on entry, and the call establishes a new mapping or
replaces the existing mapping from the given source_ae to the given list of dest_ae, or if dest_count is 0,
deletes any existing mapping for the given source_ae. This ioctl requires write access to the device.

In the ...GET_MAP_MAPPING_COUNT case, only the source_ae field must be valid on entry and the driver fills
in the dest_count field. This ioctl requires read access to the device.

In the ...GET_MAP_MAPPING case, the driver fills the dest_ae array with the list of destinations for the given
source_ae and replaces dest_count with the actual number of destinations copied to dest_ae. If on entry
dest_count is less than the number of destination addresses there currently are for the given source_ae,
EINVAL is returned. This ioctl requires read access to the device.

In the ...ADD_TO_MAPPING and ...DEL_FROM_MAPPING cases, all fields must be valid on entry, and the given
list of dest_ae will be added or deleted respectively from any existing list for the given source_ae. These
ioctls require write access to the device.

Both PCIAER_IOC_SET_MAP_MAPPING and PCIAER_IOC_MAP_ADD_TO_MAPPING may fail returning
ENOSPC due to there being insufficient free contiguous Mapper memory available, in which case
PCIAER_IOC_MAP_COMPACT may help.

In all cases, the address-event FFFFh is reserved, and attempting to use this will result in the error EINVAL.

10

file:///home/amw/pciaer/pciaer.git/driver/driver_spec.v2-3.doc

PCIAER_IOC_FIND_NEXT_MAP_MAPPING

Replaces the int pointed to by its argument with the next source address-event for which a mapping exists after the
one specified, or -1 if there are no more. To find the first mapped address, supply -1 in the int pointed to by the
argument. This ioctl causes mapping output to be suspended for the duration of the call and requires read access to
the device.

PCIAER_IOC_GET_MAP_MAPPED_MAP

Fills the 8K of memory pointed to by its argument with a bit vector in which a 0 represents a source address-event
for which a mapping does not exist and a 1 represents one for which a mapping does exist. This ioctl causes
mapping output to be suspended for the duration of the call and requires read access to the device.

PCIAER_IOC_MAP_CLEAR

Clears the Mapper's memory to a state in which no address-events are mapped. No argument is used. This ioctl
causes mapping output to be suspended for the duration of the call and requires write access to the device.

PCIAER_IOC_MAP_COMPACT

Forces maximal compaction of the Mapper's address table. No argument is used. This ioctl causes mapping output
to be suspended for the duration of the call and requires write access to the device.

PCIAER_IOC_GET_MAP_FREE_SPACE

Fills the unsigned int pointed to by its argument with the number of free words in the mapper SRAM. This
gives an indication of how many more destination addresses could be stored, but the free space may be fragmented
and need compaction before it is used. This ioctl requires read access to the device.

PCIAER_IOC_GET_MAP_FIFO_FLAGS

Fills the int pointed to by its argument with a positive logic copy of the Mapper FIFO flag bits, i.e. some
combination of the following defined flag bits: PCIAER_IOC_MAP_EMPTY and PCIAER_IOC_MAP_FULL. This
ioctl requires read access to the device.

PCIAER_IOC_ENABLE_MAP_OUT
PCIAER_IOC_DISABLE_MAP_OUT
PCIAER_IOC_GET_MAP_OUT_STATE

These three ioctls deal with whether output from the mapper is or is not enabled. By default, mapper output is
enabled, but reading from the mapper's hardware SRAM via the memory mapped into user space using mmap will
only produce valid results while mapper output is disabled and the mapper is not busy. Therefore, these ioctls are
provided to allow a user program to temporarily disable mapper output and wait for the mapper to become idle
before it inspects the RAM and to enable mapper output again afterwards. The ...ENABLE... ioctl uses no argument.
The ...DISABLE... ioctl uses its argument directly: if the argument is 0, the call returns immediately after disabling
the mapper output, and it is the user's responsibility to determine when the mapper becomes idle; if the argument is
non-zero, the call will not return until the mapper has become idle and the results of reading from the RAM will be
meaningful. The ...GET... ioctl fills the int pointed to by its argument with a status word containing a combination
of the bits PCIAER_IOC_MAP_OUT_ENABLED and PCIAER_IOC_MAP_OUT_BUSY. Both bits must be zero
before accesses to the mapper RAM is meaningful. The ...ENABLE... and ...DISABLE... ioctls require write access
to the device; the ...GET... ioctl requires read access.

PCIAER_IOC_SET_MAP_OUT_CONFIG
PCIAER_IOC_GET_MAP_OUT_CONFIG

These two ioctls deal with the configuration of the Mapper output. The ...SET... ioctl uses its argument directly to
specify one of the values PCIAER_IOC_MAP_OUT_PASS_THRU, PCIAER_IOC_MAP_OUT_1_TO_1 or
PCIAER_IOC_MAP_OUT_1_TO_MANY. The ...GET... ioctl fills the int pointed to by its argument with one of
these values according to the current status. The ...SET... ioctl requires write access to the device; the ...GET... ioctl
requires read access.

11

PCIAER_IOC_SET_MAP_DEMUX_CONFIG
PCIAER_IOC_GET_MAP_DEMUX_CONFIG

These two ioctls deal with the configuration of the AER demultiplexer on the Mapper output. The ...SET... ioctl
uses its argument directly to specify one of the values PCIAER_IOC_MAP_DEMUX_0_16,
PCIAER_IOC_MAP_DEMUX_1_15 or PCIAER_IOC_MAP_DEMUX_2_14. The names of these constants reflect
the way the 16 bits are split between channel number and actual AE bits. The ...GET... ioctl fills the int pointed to
by its argument with one of these values according to the current status. The ...SET... ioctl requires write access to
the device; the ...GET... ioctl requires read access.

PCIAER_IOC_SET_MAP_AER_PROTOCOL
PCIAER_IOC_GET_MAP_AER_PROTOCOL

These two ioctls deal with the type of AER protocol used on the Mapper output. The ...SET... ioctl uses its argument
directly to specify one of the values PCIAER_IOC_MAP_AER_P2P or PCIAER_IOC_MAP_AER_SCX indicating
the classic point to point, four phase handshake protocol or the shared bus, data only driven on acknowledge
protocol respectively. The ...GET... ioctl fills the int pointed to by its argument with one of these values according
to the current status. The ...SET... ioctl requires write access to the device; the ...GET... ioctl requires read access.

12

PCI interface configuration NVRAM minor device

This minor device can be used to access the non-volatile memory associated with the S5920 PCI interface chip in
which PCI configuration data (and optionally an expansion BIOS) are stored. This is intended to assist the hardware
developer with programming and debugging this device. Due to the adverse effects that reprogramming this
memory could have (including making the host unbootable without removing the PCIAER board!), only processes
with the capability CAP_SYS_ADMIN will be able to write to this minor device. The driver will also not allow
writes (other than of the required values) to certain particularly sensitive bytes. Reading the NVRAM can be
performed via read , which will cause NVRAM to be read and cached in RAM by the driver. Writes will normally
go only to the cache and will not be written to the physical NVRAM unless the O_SYNC flag is specified, or until
the device is released or fsync is called. Non-blocking operation is not supported.

open

On open, the byte at offset 2 within the NVRAM will be read to obtain an indication of its length. (There is no way
to determine the actual size of the NVRAM device fitted to a board.) This means that open will block. If the length
byte does not contain a valid value, the NVRAM will be assumed to be the minimum size possible, i.e. 128 bytes.
To access larger NVRAMs, the length byte should be written to, and the device closed and re-opened. If an attempt
is made to open the device specifying O_NONBLOCK, open will return -EINVAL.

release

On release, any dirty cached bytes will be written back to the NVRAM. This may take a long time (up to in excess
of 20s for the whole of a 2K NVRAM) since the NVRAM enters a “shut down” state lasting 5 – 10ms between each
byte written.

llseek

Will function in the conventional way, where the position within the file is to be understood as a position within the
cached image of the NVRAM. A seek to position 0 with respect to SEEK_END can be used to determine the driver's
current notion of the size of the NVRAM.

read

Only blocking read will be supported. As many bytes from the current position as are already cached will be read
and returned immediately, if any. If the first byte at the current file position is not yet cached, read will block
while that byte is read. A value of 0 (indicating end of file) can be returned if an attempt is made to read beyond the
driver's current notion of the size of the NVRAM.

write

Writing will not normally block, since it will usually write to the driver's cached copy of NVRAM, but if the
O_SYNC flag is turned on, write will block while the byte or bytes is or are written to the physical NVRAM. This
may take a long time (up to in excess of 20s for the whole of a 2K NVRAM) since the NVRAM enters a “shut
down” state lasting 5 – 10ms between each byte written. A value of 0 (indicating end of file) can be returned if an
attempt is made to write beyond the end of NVRAM. Attempts to write to bytes 40h, 41h, 42h, 43h, 50h, 51h, 52h
or 53h will be ignored unless the value to be written is the required value for that location (see Table 1 on page 2-74
of [2]) or in the case of bytes 42h and 43h is the value 20h or 59h respectively. (These latter values represent the
device ID 5920 which, if changed, would prevent the driver from recognising the card after a reboot.)

poll

The poll method will always indicate by returning with the POLLIN bit set that the device can be read from, even
if the read would block, since only the act of attempting the read can cause new data to become available. Whether
or not poll indicates by returning with the POLLOUT bit set that the device can be written to without blocking
depends only on whether the O_SYNC flag is set, since if it is not, write always writes only to the cache, whereas
if O_SYNC is set, write will block while writing to the hardware. At end of file, POLLHUP will be returned.

13

file:///home/amw/pciaer/pciaer.git/driver/driver_spec.v2-3.doc

fsync

Any dirty cached bytes will be written back to the NVRAM. This may block for a long time (up to in excess of 20s
for a 2K NVRAM) since the NVRAM enters a “shut down” state lasting 5 – 10ms between each byte written.

unlocked_ioctl

PCIAER_IOC_GET_VERSION_INFO
PCIAER_IOC_GET_PCI_INFO (deprecated)

These This ioctls are is described in the Common Ioctls section below.

PCIAER_IOC_GET_NVR_CACHE_STATUS

Fills the int pointed to by its argument with status flag bits. Initially only PCIAER_IOC_NVR_CACHE_DIRTY is
defined. This ioctl requires read access to the device.

PCIAER_IOC_REVERT_NVR_CACHE

Resets the cache, marking all bytes which were previously marked dirty as not cached, hence 'undoing' all pending
writes. No argument is used. This ioctl requires write access to the device.

14

file:///home/amw/pciaer/pciaer.git/driver/driver_spec.v2-3.doc

Common ioctls

PCIAER_IOC_GET_VERSION_INFO

Fills the pciaer_version_info structure pointed to by its argument with the version number of the driver, the
contents of the release registers of the two FPGAs and the contents of the S5920's revision identification register
(RID). The FPGA release and driver version information is divided within the respective unsigned short into a high
byte containing a major version number and low byte containing a minor revision number. This ioctl can be called
on any of the minor devices and requires read access to the device.

struct pciaer_version_info {
 unsigned short driver_version;
 unsigned short fpga1_release;
 unsigned short fpga2_release;
 unsigned char s5920_revision_id;
};

PCIAER_IOC_SET_CNTR_PERIOD
PCIAER_IOC_GET_CNTR_PERIOD

These two ioctls deal with the AER Clock Period. The ...SET... ioctl uses its argument directly to specify the period
in microseconds between counter updates. The only valid values are 1, 10, 50 and 100. The ...GET... ioctl fills the
int pointed to by its argument with one of these values according to the current status. These ioctls can be called
on either Monitor or Sequencer. The ...SET... ioctl requires write access to the device; the ...GET... ioctl requires
read access.

PCIAER_IOC_RST_CNTR_GET_TIME
PCIAER_IOC_GET_CNTR_LAST_RST_TIME

These two ioctls deal with resetting the counter to 0 and can be called on either Monitor or Sequencer. The first
(...RST_CNTR_GET_TIME) resets the counter and fills the timeval structure pointed to by its argument, if this is
not NULL, with the time at which it did so. This ioctl requires read and write access to the device. The second ioctl
(...GET_CNTR_LAST_RST_TIME) simply fills the timeval structure pointed to by its argument with the time at
which the counter was last reset (without causing a reset). This requires read access to the device. The timeval
structure is described on the man page for the gettimeofday system call. The last ioctl (...RST_CNTR) takes no
argument and just resets the counter. This requires write access to the device.

PCIAER_IOC_SET_ARB_CONFIG
PCIAER_IOC_GET_ARB_CONFIG

These two ioctls deal with how many devices are multiplexed into the arbiter. The ...SET... ioctl uses its argument
directly to specify one of the values PCIAER_IOC_ARB_0_16, PCIAER_IOC_ARB_1_15 or
PCIAER_IOC_ARB_2_14. The names of these constants reflect the way the 16 available bits are split between
channel number and actual AE bits. The ...GET... ioctl fills the int pointed to by its argument with one of these
values according to the current status. These ioctls can be called on either Monitor or Mapper. The ...SET... ioctl
requires write access to the device; the ...GET... ioctl requires read access.

PCIAER_IOC_SET_SEQ_ARB_CHANNEL
PCIAER_IOC_GET_SEQ_ARB_CHANNEL

These two ioctls deal with connecting the sequencer output to one of the arbiter input channels. The ...SET... ioctl
uses its argument directly: an argument of 0, 1, 2 or 3 means connect the sequencer to the given arbiter input.
The ...GET... ioctl fills the int pointed to by its argument with 0, 1, 2 or 3 according to the current status. These
ioctls can be called on either Sequencer or Mapper. The ...SET... ioctl requires write access to the device;
the ...GET... ioctl requires read access.

PCIAER_IOC_RST_FIFO

This ioctl resets the FIFO of whichever device it is called on (Monitor, Sequencer, or Mapper), clearing any events
that may be queued. No argument is used. This ioctl requires read access on the Monitor, or write access on the
Sequencer or Mapper.

15

PCIAER_IOC_GET_PCI_INFO (deprecated)

This deprecated ioctl fills in the pciaer_pci_info structure pointed to by its argument. This enables the user to
determine which PCI bus & slot any particular opened handle refers to, amongst other things. Note that if
slot_name and device_name are non-NULL on entry, they must point to buffers to receive these strings, but it
is not an error if either or both are NULL on entry – the corresponding string will simply not be available on exit.
Furthermore, the string pointed to by device_name may not always be valid on exit, depending on the
configuration of the kernel. If this is the case, the string will contain only a terminating nul character ('\0'). This ioctl
can be called on any of the minor devices and requires read access to the device.

struct pciaer_pci_info {
 unsigned int bus;
 char *slot_name;
 char *device_name;
 unsigned short vendor;
 unsigned short device;
 unsigned short subsys_vendor;
 unsigned short subsys_device;
 unsigned char base_class;
 unsigned char sub_class;
 unsigned char prog_if;
 unsigned char irq;
 unsigned char slot;
 unsigned char func;
};

Instead of using this ioctl, applications can obtain all of this information (except for the device name) from the sysfs
file system starting at /sys/bus/pci/drivers/pciaer.

PCIAER_IOC_GET_STATS (deprecated)
PCIAER_IOC_RST_STATS (deprecated)

These two deprecated ioctls deal with obtaining statistics from the Monitor, Sequencer or Mapper. Both take a
pointer to a pciaer_stats or pciaer_stats_2 structure as their argument (or optionally a NULL pointer in
the case of the ...RST... ioctl). The first member of the structure must be set by the caller to indicate the size of the
structure. If this value is not set correctly, -EINVAL will be returned. The ...GET... ioctl simply fills in the
remaining elements of the structure. This ioctl requires read access to the device. The ...RST... ioctl resets the
statistics relating to the minor device on which it is called. If its pointer argument is non-NULL, it also fills the
structure with the statistics as they were prior to being reset. This ioctl requires write access to the device and also
read access if the argument is non-NULL. The pciaer_stats and pciaer_stats_2 structures are defined
as follows:

struct pciaer_stats {
 size_t size;
 unsigned long words_transferred;
 unsigned long user_transfers;
 unsigned long total_interrupts;
 unsigned long overflows_underflows;
 unsigned long timeouts;
 unsigned long memory_usage;
};

struct pciaer_stats_2 {
 size_t size;
 unsigned long words_transferred;
 unsigned long user_transfers;
 unsigned long total_interrupts;
 unsigned long overflows_underflows;
 unsigned long timeouts;
 unsigned long memory_usage;
 struct timeval timestamp;
};

The fields have the following meanings on the various minor devices:

16

Monitor Sequencer Mapper

size sizeof(struct
pciaer_stats[_2])

sizeof(struct
pciaer_stats[_2])

sizeof(struct
pciaer_stats[_2])

words_transferred Number of words read by
user process

Number of words written
by user process

Reserved

user_transfers Number of reads
completed by user process

Number of writes
completed by user process

Reserved

total_interrupts Number of Monitor FIFO
Half Full interrupts +
number of Monitor FIFO
Full interrupts

Number of Sequencer
FIFO Half Empty
interrupts + number of
Sequencer FIFO Empty
interrupts

Number of Mapper FIFO
Full interrupts

overflows_underflows Number of Monitor FIFO
Full interrupts

Number of Sequencer
FIFO Empty interrupts

Number of Mapper FIFO
Full interrupts

timeouts Number of internal
timeouts

Reserved Reserved

memory_usage Internal buffer size in
bytes

Internal buffer size in
bytes

Reserved

timestamp Time at which statistics
were read

Time at which statistics
were read

Time at which statistics
were read

Instead of using the ioctls PCIAER_IOC_GET_STATS and PCIAER_IOC_RST_STATS, applications should
obtain the same information via debugfs, see below.

17

Debugfs

If debugfs is available, the following files will appear there:

<debugfs>/pciaer/pciaer<n>/s5920/omb
<debugfs>/pciaer/pciaer<n>/s5920/imb
<debugfs>/pciaer/pciaer<n>/s5920/mbef
<debugfs>/pciaer/pciaer<n>/s5920/intcsr
<debugfs>/pciaer/pciaer<n>/s5920/rcr
<debugfs>/pciaer/pciaer<n>/s5920/ptcr
<debugfs>/pciaer/pciaer<n>/xilinx/rr1
<debugfs>/pciaer/pciaer<n>/xilinx/sra1
<debugfs>/pciaer/pciaer<n>/xilinx/cra1
<debugfs>/pciaer/pciaer<n>/xilinx/crb1
<debugfs>/pciaer/pciaer<n>/xilinx/crc1
<debugfs>/pciaer/pciaer<n>/xilinx/rr2
<debugfs>/pciaer/pciaer<n>/xilinx/sra2
<debugfs>/pciaer/pciaer<n>/xilinx/cra2
<debugfs>/pciaer/pciaer<n>/xilinx/reset
<debugfs>/pciaer/pciaer<n>/mapstats
<debugfs>/pciaer/pciaer<n>/monstats
<debugfs>/pciaer/pciaer<n>/seqstats

where <debugfs> is the path to the debugfs mount point (usually /sys/kernel/debug) and <n> is the
pciaer board number.

Each of the first 14 of these files allows the corresponding S5920 [2] or Xilinx FPGA [1] based register to be read,
and if appropriate to be written to, for debugging purposes. The register values read from these files are formatted
according to %08X; values written will be assumed to be in hexadecimal.

Writing to the xilinx/reset file causes the Xilinx FPGAs to be reset. This requires the capability
CAP_SYS_ADMIN.

The last three files can be read to obtain statistics relating to the mapper, monitor and sequencer respectively. For
each device, the statistics are formatted as a series of lines each consisting of a decimal number followed by a space
and one of the key names given in the table belowstruct pciaer_stats_2 field names. See the table in the preceding
section for a description of the meanings of these fieldsstatistics. Writing to one of these statistics files will reset the
corresponding statistics.

18

Key name Monitor Sequencer Mapper

size sizeof(struct
pciaer_stats[_2])

sizeof(struct
pciaer_stats[_2])

sizeof(struct
pciaer_stats[_2])

words_transferred Number of words read by
user process

Number of words written
by user process

Reserved

user_transfers Number of reads
completed by user process

Number of writes
completed by user process

Reserved

total_interrupts Number of Monitor FIFO
Half Full interrupts +
number of Monitor FIFO
Full interrupts

Number of Sequencer
FIFO Half Empty
interrupts + number of
Sequencer FIFO Empty
interrupts

Number of Mapper FIFO
Full interrupts

overflows_underflows Number of Monitor FIFO
Full interrupts

Number of Sequencer
FIFO Empty interrupts

Number of Mapper FIFO
Full interrupts

timeouts Number of internal
timeouts

Reserved Reserved

memory_usage Internal buffer size in
bytes

Internal buffer size in
bytes

Reserved

timestamp Time at which statistics
were read

Time at which statistics
were read

Time at which statistics
were read

19

References

1. PCI-AER Adapter board User Manual (Rel 1.1), Vittorio Dante, Istituto Superiore di Sanità, Rome, Italy,
5 Nov 2004 .

2. AMCC PCI Products Data Book, SECTION 2: S5920 PCI Target Interface, Applied Micro Circuits
Corporation, 6290 Sequence Drive, San Diego, CA 92121-4358, http://www.amcc.com.

3. Corbet, Jonathon, Rubini, Alessandro, and Kroah-Hartman, Greg, “Linux Device Drivers”, 3 rd edn. ISBN
0-596-00590-3, O'Reilly, 2005.

4. "LINUX ALLOCATED DEVICES", maintained by Torben Mathiasen , Documentation/devices.txt within
the Linux kernel source tree or http://www.lanana.org/docs/device-list/ .

5. Man tty_ioctl

20

http://www.lanana.org/docs/device-list/
http://www.lanana.org/docs/device-list/
http://www.lanana.org/docs/device-list/
http://www.lanana.org/docs/device-list/
http://www.lanana.org/docs/device-list/
http://www.lanana.org/docs/device-list/
http://www.oreilly.com/catalog/linuxdrive3/
http://www.oreilly.com/catalog/linuxdrive3/
http://www.oreilly.com/catalog/linuxdrive3/
http://www.oreilly.com/catalog/linuxdrive3/
http://www.amcc.com/
http://neural.iss.infn.it/

Appendix – Ioctl Table

The following table lists all defined ioctls in ordinal number order.

Symbol Macro Ord. Data item Req'd
perm.

Comments

PCIAER_IOC_GET_NVRAM_SIZE 48 Obsolete – the same information can
be obtained using lseek.

PCIAER_IOC_READ_NVR_BYTE 49 Obsolete – use read instead

PCIAER_IOC_WRITE_NVR_BYTE 50 Obsolete – use write instead

PCIAER_IOC_GET_NVR_CACHE_STATUS _IOR 51 int r--

PCIAER_IOC_REVERT_NVR_CACHE _IO 52 -w-

PCIAER_IOC_GET_PCI_INFO _IOR 56 struct
pciaer_pci_info

r-- DeprecatedObsolete – use sysfs
instead.

PCIAER_IOC_RST_XILINX _IOW 57 int -w- Reserved but notnever implemented.
Use the debugfs xilinx/reset
file instead.

PCIAER_IOC_SET_SEQ_ARB_CHANNEL _IO 65 -w-

PCIAER_IOC_GET_SEQ_ARB_CHANNEL _IOR 66 int r--

PCIAER_IOC_SET_MON_CH_SEL _IO 67 -w-

PCIAER_IOC_GET_MON_CH_SEL _IOR 68 int r--

PCIAER_IOC_SET_MAP_MAPPING _IOW 69 struct
pciaer_mapping

-w-

PCIAER_IOC_GET_MAP_MAPPING_COUNT _IOWR 70 struct
pciaer_mapping

r--

PCIAER_IOC_GET_MAP_MAPPING _IOWR 71 struct
pciaer_mapping

r--

PCIAER_IOC_MAP_ADD_TO_MAPPING _IOW 72 struct
pciaer_mapping

-w- Previously
PCIAER_IOC_ADD_MAP_MAPPING

PCIAER_IOC_MAP_DEL_FROM_MAPPING _IOW 73 struct
pciaer_mapping

-w- Previously
PCIAER_IOC_DEL_MAP_MAPPING

PCIAER_IOC_FIND_NEXT_MAP_MAPPING _IOWR 74 int r--

PCIAER_IOC_GET_MAP_MAPPED_MAP _IO 75 r--*

PCIAER_IOC_SET_MON_TIME_LBL_FLAG _IO 76 -w-

PCIAER_IOC_GET_MON_TIME_LBL_FLAG _IOR 77 int r--

PCIAER_IOC_GET_MAP_FIFO_FILLS 78 Obsolete. Use
PCIAER_IOC_GET_STATS

PCIAER_IOC_GET_STATS _IOWR 78 struct
pciaer_stats

r-- DeprecatedObsolete – use debugfs
instead. Ordinal previously also used
for deprecated
PCIAER_IOC_GET_MAP_FIFO_FI
LLS

PCIAER_IOC_RST_MAP_FIFO_FILLS 79 Obsolete. Use
PCIAER_IOC_RST_STATS

PCIAER_IOC_RST_STATS _IOWR 79 struct
pciaer_stats

?w-* DeprecatedObsolete – use debugfs
instead. Read permission req'd iff
arg != NULL Ordinal previously also
used for deprecated
PCIAER_IOC_RST_MAP_FIFO_FI
LLS

PCIAER_IOC_SET_MAP_OUT_CONFIG _IO 80 -w-

PCIAER_IOC_GET_MAP_OUT_CONFIG _IOR 81 int r--

PCIAER_IOC_RST_CNTR 82 Obsolete. Use
PCIAER_IOC_RST_CNTR_GET_TI
ME with arg = NULL instead.

PCIAER_IOC_RST_CNTR_GET_TIME _IOR 82 struct timeval ?w-* Read permission req'd iff arg !=
NULL

21

http://www.lanana.org/docs/device-list/
http://www.lanana.org/docs/device-list/

Symbol Macro Ord. Data item Req'd
perm.

Comments

PCIAER_IOC_SET_MAP_DEMUX_CONFIG _IO 83 -w-

PCIAER_IOC_GET_MAP_DEMUX_CONFIG _IOR 84 int r--

PCIAER_IOC_SET_MAP_AER_PROTOCOL _IO 85 -w-

PCIAER_IOC_GET_VERSION_INFO _IOR 86 struct
pciaer_version_i
nfo

r--

PCIAER_IOC_GET_MAP_AER_PROTOCOL _IOR 87 int r--

PCIAER_IOC_MAP_CLEAR _IO 88 -w-

PCIAER_IOC_SET_MAP_CH_SEL _IO 89 -w-

PCIAER_IOC_MAP_COMPACT _IO 90 -w-

PCIAER_IOC_GET_MAP_FREE_SPACE _IOR 91 unsigned int r--

PCIAER_IOC_GET_CNTR_LAST_RST_TIME _IOR 92 struct timeval r--

PCIAER_IOC_GET_MON_DATA_WORD 97 Obsolete – use read instead.

PCIAER_IOC_ENABLE_MAP_OUT _IO 98 -w-

PCIAER_IOC_DISABLE_MAP_OUT _IO 99 -w-

PCIAER_IOC_GET_MAP_OUT_STATE _IOR 100 int r--

PCIAER_IOC_GET_MAP_FIFO_FLAGS _IOR 101 int r--

PCIAER_IOC_GET_MON_FIFO_FLAGS _IOR 102 int r--

PCIAER_IOC_GET_SEQ_FIFO_FLAGS _IOR 103 int r--

PCIAER_IOC_RST_FIFO _IO 104 ??-* Required permission: mon r--; seq
-w-; map -w-

PCIAER_IOC_SET_SEQ_IN_ARB 105 Superseded by
PCIAER_IOC_SET_SEQ_ARB_CHA
NNEL

PCIAER_IOC_GET_SEQ_IN_ARB 106 Superseded by
PCIAER_IOC_GET_SEQ_ARB_CHA
NNEL

PCIAER_IOC_SET_CNTR_PERIOD _IO 107 -w-

PCIAER_IOC_GET_CNTR_PERIOD _IOR 108 int r--

PCIAER_IOC_SET_ARB_CONFIG _IO 109 -w-

PCIAER_IOC_GET_ARB_CONFIG _IOR 110 int r--

PCIAER_IOC_DEBUG_XILINX_READ 111 Obsolete – use debugfs instead.

PCIAER_IOC_DEBUG_XILINX_WRITE 112 Obsolete – use debugfs instead.

PCIAER_IOC_DEBUG_S5920_READ 113 Obsolete – use debugfs instead.

PCIAER_IOC_GET_MON_DATA_BLOCK 114 Obsolete – use read instead. Ordinal
previously also used for deprecated
CFG_IOC_FREADL

PCIAER_IOC_GET_MON_FIFO_DEPTH 115 Obsolete – use fstat instead - see
text for details.
PCIAER_IOC_GET_FIFO_DEPTH.
Ordinal previously also used for
deprecated CFG_IOC_SWRITEL

PCIAER_IOC_GET_FIFO_DEPTH 116 Obsolete - use fstat instead - see
text for details.

PCIAER_IOC_DEBUG_FIFO_WRITE 117 Obsolete – use Sequencer write
instead.

PCIAER_IOC_DEBUG_SRAM_READ 118 Obsolete – use Mapper mmap
insrtead.

PCIAER_IOC_DEBUG_S5920_WRITE 119 Obsolete – use debugfs instead.

PCIAER_IOC_DEBUG_FIFO_READ 120 Obsolete – use Monitor read
instead.

PCIAER_IOC_GET_MAP_CH_SEL _IOR 121 int r--

22

Symbol Macro Ord. Data item Req'd
perm.

Comments

PCIAER_IOC_DEBUG_SRAM_WRITE 122 Obsolete – use Mapper mmap and
mprotect insrtead.

A '*' in the Req'd perm. column indicates an ioctl which does not follow the regular pattern of ioctls defined using
_IOR or _IOWR requiring read permission and those defined using _IO or _IOW requiring write permission.

23

